Journal of Systems Engineering and Electronics ›› 2011, Vol. 33 ›› Issue (2): 438-442.doi: 10.3969/j.issn.1001-506X.2011.02.41

• 软件、算法与仿真 • 上一篇    下一篇

基于感兴趣点特征的彩色图像目标分类与识别

赵文哲, 秦世引   

  1. 北京航空航天大学自动化科学与电气工程学院, 北京 100191
  • 出版日期:2011-02-28 发布日期:2010-01-03

Chromatic image classification and recognition based on interest point features

ZHAO Wen-zhe, QIN Shi-yin   

  1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
  • Online:2011-02-28 Published:2010-01-03

摘要:

提出一种基于赋色尺度不变特征变换的特征提取方法,分析证明了该特征对平移、旋转、缩放、颜色漂移等因素的不变性。进而研究了基于该特征的彩色图像目标分类与识别的策略和实现技术,提出了相应的算法。通过运用阿姆斯特丹目标图片库中随机选择的50类对象进行分类识别的实验检验,识别正确率可达到100%。理论分析和实验结果表明,赋色尺度不变特征在彩色图像的分类识别中展示出优越的性能。

Abstract:

The color scaleinvariant feature transform (color SIFT) based feature extraction method is proposed, and the related invariance properties in translation, rotation, zooming, and color shifting are analyzed. Further, image classification strategy and algorithms based on this feature are studied. To test the proposed classification and recognition algorithms, 50 objects categories randomly chosen from the Amsterdam library of object images (ALOI) are employed for recognition, and results show that the correct rate of recognition is 100%. Both theoretical and experimental results validate that the color SIFT feature has a good performance in chromatic image classification and recognition.

中图分类号: