Journal of Systems Engineering and Electronics ›› 2012, Vol. 34 ›› Issue (2): 424-428.doi: 10.3969/j.issn.1001-506X.2012.02.39

• 可靠性 • 上一篇    下一篇

基于灰色相关向量机的故障预测模型

范庚, 马登武, 邓力, 吕晓峰   

  1. 海军航空工程学院兵器科学与技术系, 山东 烟台 264001
  • 出版日期:2012-02-15 发布日期:2010-01-03

Fault prognostic model based on grey relevance vector machine

FAN Geng, MA Dengwu, DENG Li, LV Xiaofeng   

  1. Department of Ordnance Science and Technology, Naval Aeronautical and Astronautical University, Yantai 264001, China
  • Online:2012-02-15 Published:2010-01-03

摘要:

针对样本数据量较小条件下的故障预测问题,提出了一种灰色相关向量机(relevance vector machine, RVM)故障预测模型。在模型的训练阶段,根据特征数据序列建立其离散灰色模型(discrete grey model, DGM),以DGM的预测值作为输入、原始数据序列作为输出,训练得到RVM回归预测模型;在模型的预测阶段,由建立的DGM和RVM回归预测模型组合得到灰色RVM故障预测模型,并通过引入新陈代谢过程,不断更新数据中的信息。实验结果表明,模型的预测性能优于传统的灰色预测模型。

Abstract:

To solve the fault prognostic problem caused by small samples, a model based on grey relevance vector machine (RVM) is presented. At the training stage, the discrete grey model (DGM) is established according to the characteristic data sequence, and the model based on RVM regression is trained by using the forecasting values of DGM as input and using the original data sequence as output; At the forecasting stage, a grey RVM model is established by combining DGM and model based on RVM regression, and the information contained in the data are updated through metabolism. The experiment results show that the model has a better performance than conventional grey models.