Journal of Systems Engineering and Electronics ›› 2010, Vol. 32 ›› Issue (12): 2493-2499.doi: 10.3969/j.issn.1001-506X.2010.12.01

• 电子技术 •    下一篇

非线性非高斯模型的高斯和滤波算法

林青1, 尹建君1, 张建秋1, 胡波1   

  1. 1.复旦大学电子工程系, 上海 200433
  • 出版日期:2010-12-18 发布日期:2010-01-03

Gaussian sum filtering methods for nonlinear non-Gaussian models

LIN Qing1, YIN Jian-jun1, ZHANG Jian-qiu1, HU Bo1   

  1. 1.Electronic Engineering Dept., Fudan Univ., Shanghai 200433, China
  • Online:2010-12-18 Published:2010-01-03

摘要:

通过将模型的状态噪声和观测噪声均表示成高斯和的形式,推导出非线性非高斯状态空间模型的高斯和递推算法,进一步提出了对应的扩展卡尔曼和滤波器(extended Kalman sum filter, EKSF)和高斯厄密特和滤波器(Gauss-Hermite sum filter, GHSF)。EKSF和GHSF分别用扩展卡尔曼滤波器(extended Kalman filter, EKF)和高斯厄密特滤波器(Gauss-Hermite filter, GHF)作为高斯子滤波器。分析的结果表明,现有的高斯和滤波算法是本文算法的特例;仿真结果表明,EKSF和GHSF能有效处理非线性非高斯模型的状态滤波问题,与高斯和粒子滤波器(Gaussian sum particle filter, GSPF)相比,EKSF和GHSF在保证精度的同时,大大降低了计算量,仿真时间分别约为GSPF的5%和6%。

Abstract:

The Gaussian sum recursive algorithms for nonlinear non-Gaussian state space models, on the assumption that the process and measurement noises are denoted by Gaussian-sums, is firstly deduced. And then the corresponding extended Kalman sum filter (EKSF) and the Gauss-Hermite sum filter (GHSF) are proposed, which use the extended Kalman filter (EKF) and Gauss-Hermite filter (GHF) as the Gaussian sub-filter respectively. The analysis shows that the existing Gaussian sum filtering algorithms are nothing but special casesof the deduced algorithm. The simulation results show that the proposed EKSF and GHSF can deal with the state estimation of the nonlinear non-Gaussian models effectively, and only consume about 5% and 6% of the computing time required by the Gaussian sum particle filter (GSPF), while the consistent filtering performance is kept.