Journal of Systems Engineering and Electronics ›› 2009, Vol. 31 ›› Issue (9): 2212-2214,2248.

• 软件、算法与仿真 • 上一篇    下一篇

基于混合遗传粒子群算法的混沌系统参数估计

张健中, 王庆超   

  1. 哈尔滨工业大学能源科学与工程学院, 黑龙江, 哈尔滨, 150001
  • 收稿日期:2008-08-06 修回日期:2008-10-30 出版日期:2009-09-20 发布日期:2010-01-03
  • 作者简介:张健中(1984- ),男,博士研究生,主要研究方向为智能优化算法\化工过程控制.E-mail:zjzhit1984@163.com
  • 基金资助:
    国家自然科学基金(60574022)资助课题

Parameter estimation for chaotic systems based on hybrid genetic particle swarm optimization

ZHANG Jian-zhong, WANG Qing-chao   

  1. School of Energy Science and Engineering, Harbin Inst. of Technology, Harbin 150001, China
  • Received:2008-08-06 Revised:2008-10-30 Online:2009-09-20 Published:2010-01-03

摘要: 针对粒子群算法容易出现"早熟"的缺点,提出了一种改进的混合遗传粒子群(hybrid genetic particle swarm optimization,HGPSO)算法。在粒子群算法的迭代中引入淘汰机制,将满足淘汰条件的粒子与当前适应度最优的粒子进行多后代择优交叉和一定概率的变异操作,以期得到适应度更优的新粒子,代替被淘汰粒子。通过对4个典型函数的测试表明,该算法能够有效地克服"早熟"现象,提高了全局寻优的能力。将改进的算法用于Lorenz混沌系统的参数估计。仿真结果表明,即使在加入测量噪声的情况下,该算法仍能够对系统的未知参数做出有效的估计。

Abstract: To avoid the prematurity phenomenon of particle swarm optimization,a novel hybrid genetic particle swarm optimization(PSO) algorithm is proposed.An eliminative mechanism is introduced into the iteration of PSO.In addition to multi-offspring competition crossover between the eliminated particles and the best particle,the mutation of the best particle is also preformed to obtain new particles which have better fitness values.Test experiments of four classic benchmark functions indicate that the proposed algorithm can avoid prematurity effectively,and the algorithm possesses better ability in finding global optimum than PSO.The improved algorithm is subsequently used in parameter estimation of Lorenz chaotic systems.Numerical simulation shows that the algorithm can estimate the system unknown parameters effectively even in the presence of measurement noises.

中图分类号: