系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (1): 254-267.doi: 10.12305/j.issn.1001-506X.2025.01.26
杜磊1, 陈振1, 户恒在1,*, 张强2, 刘向东1, 张可墨2
收稿日期:
2024-01-19
出版日期:
2025-01-21
发布日期:
2025-01-25
通讯作者:
户恒在
作者简介:
杜磊(1992—), 男, 博士研究生, 主要研究方向为电机设计、电磁消旋装置电磁分析、空间非合作目标非接触式消旋基金资助:
Lei DU1, Zhen CHEN1, Hengzai HU1,*, Qiang ZHANG2, Xiangdong LIU1, Kemo ZHANG2
Received:
2024-01-19
Online:
2025-01-21
Published:
2025-01-25
Contact:
Hengzai HU
摘要:
太空中大量残留的空间非合作目标危及在轨运行卫星的安全, 为规避潜在碰撞风险, 采取消旋后再捕获变得尤为重要。针对如何衰减目标的旋转速度, 系统调研国内外非接触式电磁消旋方法。首先, 介绍电磁消旋原理与旋转非合作目标中两种典型的运动形式。其次, 定性地对电磁消旋方法的优势及可行性进行分析。然后, 对非接触式电磁消旋方法进行分类, 从非均匀/均匀静止磁场、机械式/电磁式旋转磁场方面入手, 详细分析最新消旋方法及关键技术。接着, 对消旋转矩的计算方法及相关控制技术进行总结归纳。最后, 展望电磁消旋方法的未来发展方向。
中图分类号:
杜磊, 陈振, 户恒在, 张强, 刘向东, 张可墨. 空间非合作目标非接触式电磁消旋方法综述[J]. 系统工程与电子技术, 2025, 47(1): 254-267.
Lei DU, Zhen CHEN, Hengzai HU, Qiang ZHANG, Xiangdong LIU, Kemo ZHANG. Overview of contactless electromagnetic de-tumbling method for uncooperative space target[J]. Systems Engineering and Electronics, 2025, 47(1): 254-267.
表1
典型航天器结构、材料特性及用途"
结构名称 | 常用材料 | 优点 | 用途 |
板材、 厚板材、 拉伸管、 挤压管、 挤压棒材、 型材、 锻件、 冷加工棒材、 柳钉、 线材等 | 铝合金(有色金属) | 具有质轻、较高的比强度、成型工艺性及耐蚀性良好、成本低等优点, 铝合金技术是国防科技关键技术及重点发展的基础技术 | 多级火箭的燃料槽与航天器零件、焊接氧化剂槽、航天器蒙皮、端框、内部承力支架、铝蜂窝夹层面板、直属件等 |
钛合金(有色金属) | 具有高比强度、耐腐蚀、优良的低温力学性能, 已成为宇航工业中广泛普及的重要结构金属材料 | 压力容器、仪器绑带、燃料贮箱、紧固件、支撑件、航天器壳体、整流罩球形气瓶、架构等 | |
镁锂合金(有色金属) | 具有超轻、高比强度、高比模量、优异的刚性、良好的导电导热性能电磁屏蔽性与可焊性。若能有效利用丰富的镁资源, 发展高端镁合金产品, 有望成为未来新一代航天装备的备选材料 | 航天器的防护罩、航天气瓶内衬、电器仪表的框架如计算机设备外壳、线路板盒、人工数据键盘的基板与支架等 | |
碳纤维等(复合材料) | 承担主承力和次承力结构的主要功能。由于具有优异的力学性能和良好的工艺性使其在航天产品中获得广泛应用, 正逐步取代传统金属材料成为主要结构材料 | 航天器的承力筒、舱体壁板、太阳翼基板、遥感器镜筒、相机支架、天线及其他衍架结构件 |
表2
电磁消旋方法比较"
电磁消旋方法 | 优点 | 缺点/解决办法 | 适用场景 | |
静止磁场 | 非均匀磁场 | 1. 能适应不同大小的目标 2. 对作业距离无要求 | 存在偏移和排斥效应, 需要两个相对放置装置协同消旋 | 1. 对于小目标, 对消旋平台形式无要求 2. 对于大目标, 宜采用双星单臂机载消旋平台 |
均匀磁场 | 避免偏移和排斥效应, 消旋过程稳定 | 1. 配置所需磁场条件严苛, 对于大目标不适用, 需要考虑线圈的体积、重量等因素 2. 对姿轨控制提出挑战 | 1. 适宜近距离处作业 2. 对于小目标, 对消旋平台形式无要求; 对于大目标, 适宜单星单臂 | |
旋转磁场 | 机械式旋转磁场 | 电磁消旋装置和旋转目标之间较大的相对速度, 能增大消旋转矩, 有效提高消旋效率 | 1. 机械动力装置需持续机动, 功耗高 2. 对姿轨控制要求高 3. 目标有反向加速风险 | 1. 适宜在近距离处作业 2. 适宜消旋小目标或可避开大物理附件的目标 |
电磁式旋转磁场 | 电磁消旋装置和旋转目标之间较大的相对速度, 能增大消旋转矩, 有效提高消旋效率 | 1. 控制器的存在, 增加了控制系统的复杂性 2. 当旋转磁场与目标转速方向不同时, 需持续观测目标速度, 以防出现反向加速风险 | 1. 对于消旋装置在目标一侧的结构, 宜消除携带大物理附件的目标 2. 对于线圈在目标周围的结构, 宜消除小目标 |
28 | 骆光照, 徐永强, 岳晓奎, 等. 一种对空间非磁化金属碎片直流消旋磁场控制方法[P]. 中国: |
CN201510829251.5, 2017-03-22. LUO G Z, XU Y Q, YUE X K, et al. A method for controlling the DC demagnetization magnetic field of space non-magnetized metal debris[P]. China: CN201510829251.5, 2017-03-22. | |
29 | YU Y F , YUE H H , ZHAO H H , et al. Optimal configuration of distributed HTS coils for the non-contact de-tumbling of space debris[J]. Acta Astronaut, 2021, 191, 491- 501. |
30 |
LI M , ZHANG Y , ZHANG J R , et al. Detumbling method for uncontrolled satellite based on eddy currents[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (8): 1444- 1455.
doi: 10.2514/1.G004234 |
31 | LIU X G , LU Y , ZHANG Q , et al. An application of eddy current effect on the active detumble of uncontrolled satellite with tilt air gap[J]. IEEE Trans.on Magnetics, 2019, 55 (12): 6201511. |
32 | ZHANG Q, ZHANG K M, LU Y, et al. Pneumatic attitude control of the air bearing tested to simulate the three axis free tumbling motion of an uncooperative target[C]//Proc. of the IEEE International Conference on Mechatronics and Automation, 2019. |
33 |
MENG Q L , ZHAO C Z , JI H X , et al. Identify the full inertial parameters of a non-cooperative target with eddy current detumbling[J]. Advances in Space Research, 2020, 66 (7): 1792- 1802.
doi: 10.1016/j.asr.2020.05.044 |
34 | 骆光照, 徐永强, 孙楚昕, 等. 一种对空间非磁化金属碎片进行消旋的方法[P]. 中国: |
CN201610813774.5, 2019-11-22. LUO G Z, XU Y Q, SUN C X, et al. A method for despinning space non-magnetized metal debris[P]. China: CN201610813774.5, 2019-11-22. | |
35 | 骆光照, 徐永强, 孙楚昕, 等. 一种对空间非磁化金属碎片消旋的交变磁场的方法[P]. 中国: |
CN201610178723. X, 2017-05-10. LUO G Z, XU Y Q, SUN C X, et al. A method for despinning space non-magnetized metal debris using alternating magnetic field[P]. China: CN201610178723. X, 2017-05-10. | |
36 | 陈振, 杜磊, 户恒在, 等. 一种空间非磁性金属体消旋装置及消旋方法[P]. 中国: |
CN202211112390.2, 2022-12-13. CHEN Z, DU L, HU H Z, et al. A despinning device and method for space non-magnetic metal bodies[P]. China: CN202211112390.2, 2022-12-13. | |
37 | 陈振, 杜磊, 赵静, 等. 一种空间非磁性金属体消旋装置及方法[P]. 中国: |
CN202211119269.2, 2022-12-02. CHEN Z, DU L, ZHAO J, et al. A despinning device and method for space non-magnetic metal bodies[P]. China: CN202211119269.2, 2022-12-02. | |
38 | 骆光照, 徐永强, 孙楚昕, 等. 低速自旋空间非磁化金属碎片的加速消旋磁场的产生方法[P]. 中国: |
CN201610177608.0, 2018-06-29. LUO G Z, XU Y Q, SUN C X, et al. Method for generating accelerating despinning magnetic field for low-speed spinning space non-magnetized metal debris[P]. China: CN201610177608.0, 2018-06-29. | |
39 | 邢焰, 王向轲. 航天器材料[M]. 北京: 北京理工大学出版社, 2018. |
XING Y , WANG X K . Spacecraft materials[M]. Beijing: Beijing Institute of Technology Press, 2018. | |
40 | DOUBOCK P A , SPOTP F , SIMPSON J , et al. The Envisat satellite and its integration[J]. ESA Bulletin, 2001, 106, 26- 45. |
41 | BASIDA V B, LEMMENS S, KRAG H. Investigation on envi-sat attitude motion[R]. Paris: European Space Agency, 2014. |
42 | GARRETT H B , WHITTLESEY A C . Guide to mitigating spacecraft charging effects: Vol 3[M]. New Jersey: John Wiley & Sons, 2012. |
43 | DAI W H , SONG Y T , FANG C , et al. Simulation for the superconductor linear eddy current brake of the high-speed train[J]. IEEE Trans.on Applied Superconductivity, 2023, 33 (7): 4901406. |
1 | 空间瞭望智库. 中国航天科技活动蓝皮书(2022年)[R]. 北京: 中国航天科技集团有限公司, 2022. |
Space Observation Think Tank. China space technology activities blue book (2022)[R]. Beijing: China Aerospace Science and Technology Corporation, 2022. | |
2 | Inter-Agency Space Debris. Key definitions of the inter-agency space debris coordination committee[R]. Texas: Amerika Serikat, 2013. |
3 | HUGHES P C . Spacecraft attitude dynamics[M]. New York: Dover Publications, 2004. |
4 | CASTRONUOVO M M . Active space debris removal-a preliminary mission analysis and design[J]. Acta Astronautica, 2011, 69 (9/10): 848- 859. |
5 |
KADABA P K , NAISHADHAM K . Feasibility of noncontac-ting electromagnetic despinning of a satellite by inducing eddy currents in its skin Ⅰ. Analytical considerations[J]. IEEE Trans.on Magnetics, 1995, 31 (4): 2471- 2477.
doi: 10.1109/20.390159 |
6 | SUGAI F, ABIKO S, TAUJITA T, et al. Detumbling an uncontrolled satellite with contactless force by using an eddy current brake[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013. |
7 | SUGAI F, ABIKO S, TAUJITA T, et al. Development of an eddy current brake system for detumbling malfunctional satellites[C]//Proc. of the IEEE/SICE International Symposium on System Integration, 2012. |
8 |
LEDKOV A , ASLANOV V . Review of contact and contactless active space debris removal approaches[J]. Progress in Aerospace Sciences, 2022, 134, 100858.
doi: 10.1016/j.paerosci.2022.100858 |
9 |
赵弘骞, 左宸昊, 岳晓奎, 等. 失效航天器非接触式消旋技术发展综述[J]. 宇航学报, 2023, 44 (12): 1797- 1809.
doi: 10.3873/j.issn.1000-1328.2023.12.002 |
ZHAO H Q , ZUO C H , YUE X K , et al. A review of the contactless detumbling technology for failed spacecraft[J]. Journal of Astronautics, 2023, 44 (12): 1797- 1809.
doi: 10.3873/j.issn.1000-1328.2023.12.002 |
|
44 | KONG E M. Spacecraft formation flight exploiting potential fields[D]. Massachusetts: Massachusetts Institute of Techno-logy, 2002. |
45 | MILLER D, SAENZ-OTERO A, WERTZ J, et al. SPHERES: a tested for long duration satellite formation flying in micro-gravity conditions[C]//Proc. of the AAS/AIAA Space Flight Mechanics Meeting, 2000: AAS00-110. |
46 | RODGERS L, HOFF N, JORDAN E, et al. A universal interface for modular spacecraft[C]//Proc. of the 19th Annual AIAA/USU Conference on Small Satellites, 2005: SSC05-I-3. |
47 |
PORTER A K , ALINGER D J , SEDWICK R J , et al. Demonstration of electromagnetic formation flight and wireless power transfer[J]. Journal of Spacecraft and Rockets, 2014, 51 (6): 1914- 1923.
doi: 10.2514/1.A32940 |
48 | FOUST R C, LUPU E S, NAKKA Y K, et al. Ultra-soft electromagnetic docking with applications to in-orbit assembly[C]// Proc. of the 69th International Astronautical Congress, 2018. |
49 | 张元文. 空间电磁对接/分离动力学与控制研究[D]. 长沙: 国防科技大学, 2013. |
ZHANG Y W. Research on dynamics and control of space electromagnetic docking and separation[D]. Changsha: National University of Defense Technology, 2013. | |
50 | 张景晖. 航天器电磁对接控制与试验方法研究[D]. 长沙: 国防科技大学, 2020. |
ZHANG J H. Research on spacecraft electromagnetic docking control and experiment method[D]. Changsha: National University of Defense Technology, 2020. | |
51 | 张强. 柔性自稳定空间电磁对接系统设计与实验研究[D]. 长沙: 国防科技大学, 2013. |
ZHANG Q. Research on flexible and self-stabilized electromagnetism docking system[D]. Changsha: National University of Defense Technology, 2013. | |
52 | 谢逸轩. 微纳卫星电磁连接及分离机构的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
10 |
SHAN M H , GUO J , GILL E . Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80, 18- 32.
doi: 10.1016/j.paerosci.2015.11.001 |
11 | 刘磊, 熊子珺, 卫洪涛, 等. 先进航天器动力学与控制[M]. 北京: 科学出版社, 2023. |
LIU L , XIONG Z J , WEI H T , et al. Advanced spacecraft dynamics and control[M]. Beijing: Science Press, 2023. | |
12 | KAPLAN M H, BOONE B, BROWN R, et al. Engineering issues for all major modes of in Situ space debris capture[C]// Proc. of the AIAA Space Conference & Exposition, 2010: 8863. |
13 |
HU S H , TANG J S . Reference dynamic models for space debris orbit prediction[J]. Chinese Astronomy and Astrophysics, 2023, 47 (4): 872- 893.
doi: 10.1016/j.chinastron.2023.11.003 |
14 |
WANG X Y , KATUPITIYA J . Robust control of a dual-arm space robot to capture a non-cooperative target in 3D space[J]. Aerospace Science and Technology, 2023, 141, 108538.
doi: 10.1016/j.ast.2023.108538 |
15 |
BENNETT T , SCHAUB H . Contactless electrostatic detumbling of axi-symmetric GEO objects with nominal pushing or pulling[J]. Advances in Space Research, 2018, 62 (11): 2977- 2987.
doi: 10.1016/j.asr.2018.07.021 |
16 |
DAI H H , ZHAO H Q , YUE X K . Plasma detumbling of failed spacecraft by using hall effect thrusters[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (12): 2389- 2397.
doi: 10.2514/1.G006639 |
17 |
SAKAI D , YOSHIMURA Y , HANADA T , et al. Contactless attitude control of an uncooperative satellite by laser ablation[J]. Acta Astronautica, 2022, 196, 275- 281.
doi: 10.1016/j.actaastro.2022.04.024 |
18 |
石永康, 杨乐平, 朱彦伟, 等. 空间旋转目标涡流消旋概念与仿真分析[J]. 宇航学报, 2018, 39 (10): 1089- 1096.
doi: 10.3873/j.issn.1000-1328.2018.10.004 |
SHI Y K , YANG L P , ZHU Y W , et al. Modeling and simulation of superconducting eddy brake concept for space tumbling object[J]. Journal of Astronautics, 2018, 39 (10): 1089- 1096.
doi: 10.3873/j.issn.1000-1328.2018.10.004 |
|
52 | XIE Y X. Research on electromagnetic dockingand separation mechanism of micro-nano satellite[D]. Harbin: Harbin Institute of Technology, 2018. |
53 | CHEN W W, MU Z C, WANG W, et al. The multiple coils to perform autonomous rendezvous & docking of cubeSat/micro-satellite[C]//Proc. of the 29th Chinese Control and Decision Conference, 2017: 3178-3183. |
54 |
SHI K K , LIU C , SUN Z W . Constrained fuel-free control for spacecraft electromagnetic docking in elliptical orbits[J]. Acta Astronautica, 2019, 162, 14- 24.
doi: 10.1016/j.actaastro.2019.05.016 |
55 |
LIU C , YUE X K , ZHANG J Q , et al. Active disturbance rejection control for delayed electromagnetic docking of spacecraft in elliptical orbits[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (3): 2257- 2268.
doi: 10.1109/TAES.2021.3130830 |
56 |
SHI K K , LIU C , SUN Z W , et al. Coupled orbit-attitude dynamics and tracking control for spacecraft electromagnetic docking[J]. Applied Mathematical Modelling, 2022, 101, 553- 572.
doi: 10.1016/j.apm.2021.08.030 |
57 |
PRALY N , HILLIO M , BONNAL C , et al. Study on the eddy current damping of the spin dynamics of space debris from the Ariane launcher upper stages[J]. Acta Astronautica, 2012, 76, 145- 153.
doi: 10.1016/j.actaastro.2012.03.004 |
58 |
赵宏亮, 张文元, 杨乐平, 等. 空间目标远距离磁控方法及应用分析[J]. 系统工程与电子技术, 2024, 46 (1): 261- 267.
doi: 10.12305/j.issn.1001-506X.2024.01.30 |
ZHANG H L , ZHANG W Y , YANG L P , et al. Method and application analysis of remote magnetic controlling for space target[J]. Systems Engineering and Electronics, 2024, 46 (1): 261- 267.
doi: 10.12305/j.issn.1001-506X.2024.01.30 |
|
59 | SMITH G L. A theoretical study of the torques induced by a magnetic field on rotating cylinders and spinning thin-wall cones, cone frustums, and general body of revolution[R]. Washington: Planetary and Space Science, National Aeronautics and Space Administration (NASA), 1962. |
60 | 黄少华, 石永康, 陈金山, 等. 基于能量守恒的空间旋转目标消旋力矩计算方法[J]. 计算力学学报, 2024, 41 (2): 306- 312. |
HUANG S H , SHI Y K , CHEN J S , et al. Calculation method of damping torque of space rotating targets based on energy conservation[J]. Chinese Journal of Computational Mechanics, 2024, 41 (2): 306- 312. | |
19 |
GOMEZ N O , WALKER S J I . Eddy currents applied to de-tumbling of space debris: analysis and validation of approximate proposed methods[J]. Acta Astronautica, 2015, 114, 34- 53.
doi: 10.1016/j.actaastro.2015.04.012 |
20 | 王骞, 陈津灏, 孙全浩, 等. 空间近距离金属碎片的无接触式减旋机构研究[J]. 微特电机, 2021, 49 (6): 17- 21. |
WANG Q , CHEN J H , SUN Q H , et al. Research on non-contact derotation mechanism to mechanism to metal framents closely in space[J]. Small & Special Electrical Machines, 2021, 49 (6): 17- 21. | |
21 |
YU Y F , YANG F , YUE H H , et al. Prospects of de-tumbling large space debris using a two-satellite electromagnetic formation[J]. Advances in Space Research, 2021, 67 (6): 1816- 1829.
doi: 10.1016/j.asr.2020.12.039 |
22 | DU L , CHEN Z , HU H Z , et al. Contactless de-tumbling of the uncooperative targets using arc-linear electromagnetic device[J]. Advances in Space Research, 2022, 8 (15): 3290- 3300. |
23 |
YU Y F , YUE H H , ZHOU A Y , et al. Electromagnetic force on an aluminum honeycomb sandwich panel moving in a magneticfield[J]. Sensors, 2023, 23 (20): 8577.
doi: 10.3390/s23208577 |
24 |
STARK R , GENIN C , SCHNEIDER D , et al. Ariane 5 performance optimization using dual-bell nozzle extension[J]. Journal of Spacecraft and Rockets, 2016, 53 (4): 743- 750.
doi: 10.2514/1.A33363 |
25 |
LIN H Y , ZHAO C . Evolution of the rotational motion of space debris acted upon by eddy current torque[J]. Astrophysics and Space Science, 2015, 357 (2): 167.
doi: 10.1007/s10509-015-2396-2 |
26 |
NURGE M A , YOUNGQUIST R C , CARACCIOLO R A , et al. A thick-walled sphere rotating in a uniform magnetic field: the next step to de-spin a space object[J]. American Journal of Physics, 2017, 85 (8): 596- 610.
doi: 10.1119/1.4984810 |
27 | 邱爽. 空间非合作目标状态估计与消旋方案设计[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
QIU S. State estimation and de-tumbling of space non-cooperative targets[D]. Harbin: Harbin Institute of Technology, 2018. | |
61 |
TAKAHASHI Y , SAKAMOTO H , SAKAI S . Kinematics control of electromagnetic formation flight using angular-momentum conservation constraint[J]. Journal of Guidance, Control, and Dynamics, 2021, 45 (2)
doi: 10.2514/1.G005873 |
62 |
SONG Y Y , ZHOU Q R , CHEN Q W . Control of electromagnetic formation flight of two satellites in Low Earth Orbits[J]. Aerospace, 2023, 10 (3): 229.
doi: 10.3390/aerospace10030229 |
63 |
RUAN G Z , WU L J , WANG B , et al. A solution using only electromagnetic coils for relative pose control in satellite docking[J]. Chinese Journal of Aeronautics, 2024, 37 (3): 258- 281.
doi: 10.1016/j.cja.2023.10.022 |
64 |
WU L J , RUAN G Z , HAN R Q , et al. Relative roll control of satellite docking using electromagnetic coils[J]. Chinese Journal of Aeronautics, 2023, 36 (12): 361- 374.
doi: 10.1016/j.cja.2023.07.019 |
65 |
LIU C , MA Y Q , YUE X K , et al. Improved sliding mode tracking control for spacecraft electromagnetic separation supporting on-orbit assembly[J]. Advances in Space Research, 2024, 73 (9): 4711- 4720.
doi: 10.1016/j.asr.2024.01.034 |
66 |
ZHANG Y , SHEN Q , HOU L Q , et al. Non-propellant eddy current brake and traction in space using magnetic pulses[J]. Aerospace, 2021, 8 (2): 24.
doi: 10.3390/aerospace8020024 |
67 | LIU X Y , CHUANG H T , HUANG P F . Eddy current de-tumbling large geostationary debris based on feedback linearization model predictive control[J]. Aerospace Science and Technology, 2021, 112, 106641. |
[1] | 龚柏春, 金鑫, 张仁勇, 陈修桥. 基于相对角动量的空间非合作目标机动仅测角检测方法[J]. 系统工程与电子技术, 2023, 45(3): 814-821. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||