1 |
李宏宇, 尹童, 敦晓彪. 临近空间高超声速武器发展概况与防御体系研究[J]. 现代防御技术, 2022, 50 (6): 1- 10.
|
|
LI H Y , YIN T , DUN X B . Overview of hypersonic weapon development and defense system research in near space[J]. Modern Defense Technology, 2022, 50 (6): 1- 10.
|
2 |
赵良玉, 雍恩米, 王波兰. 反临近空间高超声速飞行器若干研究进展[J]. 宇航学报, 2020, 41 (10): 1239- 1250.
doi: 10.3873/j.issn.1000-1328.2020.10.001
|
|
ZHAO L Y , YONG E M , WANG B L . Some achievements on interception of near space hypersonic vehicles[J]. Journal of Astronautics, 2020, 41 (10): 1239- 1250.
doi: 10.3873/j.issn.1000-1328.2020.10.001
|
3 |
YONG H P , SEO J H , LEE J G . Tracking using the variable-dimension filter with input estimation[J]. IEEE Trans.on Aero- space and Electronic Systems, 1995, 31 (1): 399- 408.
doi: 10.1109/7.366321
|
4 |
PARK S T , LEE J G . Design of practical tracking algorithm with radar tracking[J]. IEEE Trans.on Aerospace and Electronic Systems, 1998, 34 (4): 1337- 1344.
doi: 10.1109/7.722718
|
5 |
IZANLOO R, FAKOORIAN S A, YAZDI H S, et al. Kalman filtering based on the maximum correntropy criterion in the pre-sence of non-Gaussian noise[C]//Proc. of the Annual Confe-rence on Information Science and Systems, 2016: 500-505.
|
6 |
CHEN B D , LIU X , ZHAO H Q , et al. Maximum correntropy Kalman filter[J]. Automatica, 2017, 76, 70- 77.
doi: 10.1016/j.automatica.2016.10.004
|
7 |
CHEN Y M , LI W , DU Y X . A novel robust adaptive Kalman filter with application to urban vehicle integrated navigation systems[J]. Measurement, 2024, 236, 114844.
doi: 10.1016/j.measurement.2024.114844
|
8 |
LAN J , LI X R , MU C D . Best model augmentation for variable-structure multiple-model estimation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2011, 47 (3): 2008- 2025.
doi: 10.1109/TAES.2011.5937279
|
9 |
张君彪, 熊家军, 兰旭辉, 等. 基于自适应滤波的高超声速滑翔目标三维跟踪算法[J]. 系统工程与电子技术, 2022, 44 (2): 628- 636.
doi: 10.12305/j.issn.1001-506X.2022.02.33
|
|
ZHANG J B , XIONG J J , LAN X H , et al. 3D tracking algorithm of hypersonic gliding target based on adaptive filtering[J]. Systems Engineering and Electronics, 2022, 44 (2): 628- 636.
doi: 10.12305/j.issn.1001-506X.2022.02.33
|
10 |
LI X R , JILKOV V P . Survey of maneuvering target tracking. Part Ⅰ: dynamic models[J]. IEEE Trans.on Aerospace and Electronic System, 2003, 39 (4): 1333- 1364.
doi: 10.1109/TAES.2003.1261132
|
11 |
LI X R , JILKOV V P . Survey of maneuvering target tracking. Part Ⅱ: motion models of ballistic and space targets[J]. IEEE Trans.on Aerospace and Electronic System, 2010, 46 (1): 96- 119.
doi: 10.1109/TAES.2010.5417150
|
12 |
HUANG J S, ZHANG H B, TANG G J. Radar tracking for hypersonic glide vehicle based on aerodynamic model[C]//Proc. of the 29th Chinese Control and Decision Conference, 2017: 1080-1084.
|
13 |
HU G G , NI L Q , GAO B , et al. Model predictive based unscented Kalman filter for hypersonic vehicle navigation with INS/GNSS integration[J]. IEEE Access, 2020, 8, 4814- 4823.
doi: 10.1109/ACCESS.2019.2962832
|
14 |
DENG F , CHEN J , CHEN C . Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects[J]. Journal of Systems Engineering and Electronics, 2013, 24 (4): 655- 665.
doi: 10.1109/JSEE.2013.00076
|
15 |
LUO Q H , LI S H , YAN X Z , et al. An improved two-phase robust distributed Kalman filter[J]. Signal Processing, 2024, 220, 109438.
doi: 10.1016/j.sigpro.2024.109438
|
16 |
HU G G , XU L Y , GAO B B , et al. Robust unscented Kalman filter-based decentralized multisensor information fusion for INS/GNSS/CNS integration in hypersonic vehicle navigation[J]. IEEE Trans.on Instrumentation and Measurement, 2023, 72, 8504011.
|
17 |
HUANG J S , ZHANG H B , TANG G J . Robust UKF-based filtering for tracking a maneuvering hypersonic glide vehicle[J]. Journal of Aerospace Engineering, 2022, 236 (11): 2162- 2178.
|
18 |
KWON B K, HAN S. A robust extended Kalman filtering for linea- rization errors[C]//Proc. of the 15th International Conference on Control, Automation and Systems, 2015: 1485-1487.
|
19 |
ZORZI M . Robust Kalman filtering under model perturbations[J]. IEEE Trans.on Automatic Control, 2017, 62 (6): 2902- 2907.
doi: 10.1109/TAC.2016.2601879
|
20 |
ZHANG K, GUO Z Y. Neural predictor-corrector guidance based on optimized trajectory[C]//Proc. of the IEEE Chinese Guidance, Navigation and Control Conference, 2014: 523-528.
|
21 |
ZENG K, ZHUANG X B, XIE Y F, et al. Hypersonic vehicle trajectory classification using improved CNN-LSTM model[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2021: 691-696.
|
22 |
SUN L H, YANG B Q, MA J. A trajectory prediction algorithm for HFVs based on LSTM[C]//Proc. of the 40th Chinese Control Conference, 2021: 7927-7931.
|
23 |
郑天宇. 基于循环神经网络的临近空间高超声速目标航迹估计与预报[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
ZHNEG T Y. Trajectory estimation and prediction for near space hypersonic targets via recurrent neural networks[D]. Harbin: Harbin Institute of Technology, 2020.
|
24 |
吉瑞萍, 张程祎, 梁彦, 等. 基于LSTM的弹道导弹主动段轨迹预报[J]. 系统工程与电子技术, 2022, 44 (6): 1968- 1976.
|
|
JI R P , ZHANG C Y , LIANG Y , et al. Trajectory prediction of boost-phase ballistic based on LSTM[J]. Systems Engineering and Electronics, 2022, 44 (6): 1968- 1976.
|
25 |
BARTUSIAK E R, JACOBS M A, SPELLS C F, et al. Transfer learning for hypersonic vehicle trajectory prediction[C]//Proc. of the IEEE Aerospace Conference, 2023.
|
26 |
DARIO G L , GAETANO T , FRANCESCO C , et al. Long short-term memory-based neural networks for missile maneuvers trajectories prediction[J]. IEEE Access, 2023, 11, 30819- 30831.
doi: 10.1109/ACCESS.2023.3262023
|
27 |
LI Y K , LOU J X , TAN X S , et al. Adaptive kernel learning Kalman filtering with application to model-free maneuvering target tracking[J]. IEEE Access, 2022, 10, 78088- 78101.
doi: 10.1109/ACCESS.2022.3193101
|
28 |
ZHANG K, ZHUANG X B, XIE Y F. Hypersonic vehicle tra-jectory classification using improved CNN-LSTM mode[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2021: 691-696.
|
29 |
张博伦, 周荻, 吴世凯. 临近空间高超声速飞行器机动模型及弹道预测[J]. 系统工程与电子技术, 2019, 41 (9): 2072- 2079.
|
|
ZHANG B L , ZHOU D , WU S K . Maneuver model and trajectory prediction of near space hypersonic aircraft[J]. Systems Engineering and Electronics, 2019, 41 (9): 2072- 2079.
|
30 |
HERMANN R , KRENER A . Nonlinear controllability and observability[J]. IEEE Trans.on Automatic Control, 1977, 22 (5): 728- 740.
doi: 10.1109/TAC.1977.1101601
|