系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (1): 191-201.doi: 10.12305/j.issn.1001-506X.2025.01.20
张瑾木子, 徐海燕, 陈璐
收稿日期:
2023-05-23
出版日期:
2025-01-21
发布日期:
2025-01-25
通讯作者:
徐海燕
作者简介:
张瑾木子(1996—), 女, 博士研究生, 主要研究方向为冲突分析、决策基金资助:
Jinmuzi ZHANG, Haiyan XU, Lu CHEN
Received:
2023-05-23
Online:
2025-01-21
Published:
2025-01-25
Contact:
Haiyan XU
摘要:
针对决策者偏好信息可能存在的不确定性, 考虑决策者不仅具有共识或利己行为, 还可能具有激进或保守的风险态度, 将简单偏好下冲突分析图模型共识理论推广到不确定场景, 构建不确定偏好下的冲突决策共识模型。具体而言, 将不确定偏好结构引入冲突共识理论, 分别定义4种不确定偏好下冲突共识与非共识偏好和稳定性的逻辑及矩阵表达, 后者不仅方便冲突的计算和分析, 更推动相关算法的实现。所建立的模型被应用于航空业冲突, 从而得到可行解决方案。结果表明, 该模型能够对不确定环境下复杂冲突的消解提供有效策略建议。
中图分类号:
张瑾木子, 徐海燕, 陈璐. 基于图模型的不确定偏好下冲突决策共识模型[J]. 系统工程与电子技术, 2025, 47(1): 191-201.
Jinmuzi ZHANG, Haiyan XU, Lu CHEN. Consensus model under uncertain preference based on graph model for conflict resolution[J]. Systems Engineering and Electronics, 2025, 47(1): 191-201.
表4
不确定偏好下稳定性逻辑定义"
偏好类型 | 稳定性 | 一步转移(对任一状态) | 对手反击(至少存在一个) | 三步反应(对任一状态) | 稳定性判定条件 |
a型(激进型) | - | - | |||
- | |||||
- | |||||
SMR | |||||
b型(混合型) | Nash | - | - | ||
- | |||||
- | |||||
c型(混合型) | - | - | |||
- | |||||
- | |||||
d型(保守型) | - | - | |||
- | |||||
- | |||||
表5
矩阵表达符号说明"
符号 | 解释说明 | 元素解释 |
E | 元素均为1的m×m阶矩阵 | - |
哈达玛积 | - | |
sign | 适性函数(对于矩阵A第s行q列元素为sign(A(s, q))) | |
Ji | 可达矩阵(第s行q列元素为Ji(s, q)) |
表6
UC与UD偏好逻辑定义"
类型 | UC改良集 | UD改良集 | UC改良可达集 | UD改良可达集 |
a型 | ||||
b型 | ||||
c型 | ||||
d型 |
表7
不确定偏好下的冲突非共识稳定性逻辑表达"
偏好类型 | 稳定性 | 一步转移(对任一状态) | 对手反击(至少存在一个) | 三步反应(对任一状态) | 稳定性判定条件 |
a型(激进型) | UDNash | - | - | ||
UDGMRa | - | ||||
- | |||||
UDSMR | |||||
UDSSEQ | |||||
b型(混合型) | UDNash | - | - | ||
UDGMR | - | ||||
- | |||||
UDSMR | |||||
UDSSEQ | |||||
c型(混合型) | UDNash | - | - | - | |
UDGMR | - | ||||
- | |||||
d型(保守型) | UDNash | - | - | ||
- | |||||
- | |||||
表8
UC与UD偏好矩阵元素值"
偏好类型 | ||
a型(激进型) | ||
b型(混合型) | ||
c型(混合型) | ||
d型(保守型) |
表9
UC与UD改良可达矩阵定义"
矩阵类型 | 定义表达 | 元素含义 |
UC改良矩阵 | ||
UD改良矩阵 | ||
UC改良可达矩阵 | - | |
UD改良可达矩阵 | - |
表10
不确定偏好下的冲突共识与非共识稳定性矩阵定义"
偏好类型 | 稳定性 | UC稳定性 | UD稳定性 |
a型(激进型) | Nasha | ||
GMRa | - | ||
SEQa | |||
SMRa | - | ||
SSEQa | |||
b型(混合型) | Nashb | ||
GMRb | - | ||
SEQb | |||
SMRb | - | ||
SSEQb | |||
c型(混合型) | Nash | ||
- | |||
- | |||
d型(保守型) | Nash | ||
- | |||
- | |||
表11
决策者及其策略"
决策者 | 策略 | 含义 |
DM1 | O11: 履行合同 | DM1积极履行合同,解决DM2提出的质量和性能问题 |
O12: 保持现状 | DM1保持现状,既不解决问题,也不抵抗DM2的要求 | |
O13: 提供补偿与改进 | DM1提供经济补偿,并承诺改进飞机质量和性能问题 | |
O14: 推迟交付并改进 | DM1推迟交付新机,并在交付前解决所有质量和性能问题 | |
DM2 | O21: 履行合同 | DM2积极履行合同,继续接收波音787飞机,但要求DM1解决质量和性能问题 |
O22: 拖延合同 | DM2拖延履行合同,暂时停止接收波音787飞机,直到DM1解决所有问题 | |
O23: 取消合同并要求赔偿 | DM2提议取消合同,并要求DM1赔偿已交付飞机的质量和性能问题 |
1 |
KILGOURD M,HIPELK W,FANGL.The graph model for conflicts[J].Automatica,1987,23(1):41-55.
doi: 10.1016/0005-1098(87)90117-8 |
2 |
HIPELK W,FANGL,KILGOURD M.The graph model for conflict resolution: reflections on three decades of development[J].Group Decision and Negotiation,2020,29(1):11-60.
doi: 10.1007/s10726-019-09648-z |
3 |
HUANGY,GEB,SUNJ,et al.Belief-based preference structure and elicitation in the graph model for conflict resolution[J].IEEE Trans.on Systems, Man, and Cybernetics: Systems,2023,53(2):727-740.
doi: 10.1109/TSMC.2022.3186763 |
4 | 余高锋,李登峰,邱锦明,等.考虑偏好冲突的多类评价信息群体决策方法[J].控制与决策,2016,31(11):2013-2018. |
YUG F,LID F,QIUJ M,et al.A group decision-making method based on multi-category evaluation information considering preference conflict[J].Control and Decision,2016,31(11):2013-2018. | |
5 |
HUANGY,GEB,HIPELK W,et al.Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm[J].European Journal of Operational Research,2023,305(2):806-819.
doi: 10.1016/j.ejor.2022.06.052 |
6 |
XUH,KILGOURD M,HIPELK W,et al.Using matrices to link conflict evolution and resolution in a graph model[J].European Journal of Operational Research,2010,207(1):318-329.
doi: 10.1016/j.ejor.2010.03.025 |
7 |
XUH,LIK W,KILGOURD M,et al.A matrix-based approach to searching colored paths in a weighted colored multidigraph[J].Applied Mathematics and Computation,2009,215(1):353-366.
doi: 10.1016/j.amc.2009.04.086 |
8 |
XUH,LIK W,HIPELK W,et al.A matrix approach to status quo analysis in the graph model for conflict resolution[J].Applied Mathematics and Computation,2009,212(2):470-480.
doi: 10.1016/j.amc.2009.02.051 |
9 | XU H, HIPEL K W, KILGOUR D M. Matrix representation of conflicts with two decision-makers[C]//Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2007: 1764-1769. |
10 |
XUH,HIPELK W,KILGOURD M.Matrix representation of solution concepts in multiple-decision-maker graph models[J].IEEE Trans.on Systems, Man, and Cybernetics, Part A: Systems and Humans,2009,39(1):96-108.
doi: 10.1109/TSMCA.2009.2007994 |
11 |
LIK W,HIPELK W,KILGOURD M,et al.Preference uncertainty in the graph model for conflict resolution[J].IEEE Trans.on Systems, Man, and Cybernetics, Part A: Systems and Humans,2004,34(4):507-520.
doi: 10.1109/TSMCA.2004.826282 |
12 | BEN-HAIMY,HIPELK W.The graph model for conflict resolution with information-gap uncertainty in preferences[J].Applied Mathematics and Computation,2002,126(2):319-340. |
13 |
AL-MUTAIRIM S,HIPELK W,KAMELM S.Fuzzy prefe-rences in conflicts[J].Journal of Systems Science and Systems Engineering,2008,17(3):257-276.
doi: 10.1007/s11518-008-5088-4 |
14 |
BASHARM A,KILGOURD M,HIPELK W.Fuzzy prefe-rences in the graph model for conflict resolution[J].IEEE Trans.on Fuzzy Systems,2012,20(4):760-770.
doi: 10.1109/TFUZZ.2012.2183603 |
15 |
WUN,XUY,HIPELK W.The graph model for conflict resolution with incomplete fuzzy reciprocal preference relations[J].Fuzzy Sets and Systems,2019,377,52-70.
doi: 10.1016/j.fss.2018.11.012 |
16 |
WUN N,XUY,KILGOURD M,et al.Composite decision makers in the graph model for conflict resolution: hesitant fuzzy preference modeling[J].IEEE Trans.on Systems, Man, and Cybernetics: Systems,2021,51(12):7889-7902.
doi: 10.1109/TSMC.2020.2992272 |
17 |
LINM W,ZHANQ S,XUZ S.Decision making with probabilistic hesitant fuzzy information based on multiplicative consistency[J].International Journal of Intelligent Systems,2020,35(8):1233-1261.
doi: 10.1002/int.22240 |
18 |
KUANGH,BASHARM A,HIPELK W.Grey-based prefe-rence in a graph model for conflict resolution with multiple decision makers[J].IEEE Trans.on Systems, Man, and Cybernetics: Systems,2015,45(9):1254-1267.
doi: 10.1109/TSMC.2014.2387096 |
19 |
YUJ,HIPELK W,KILGOURD M,et al.Fuzzy levels of preference strength in a graph model with multiple decision makers[J].Fuzzy Sets and Systems,2019,377,71-84.
doi: 10.1016/j.fss.2018.12.016 |
20 |
GONGZ W,GUOW W,HERRERA-VIEDMAE,et al.Consistency and consensus modeling of linear uncertain preference relations[J].European Journal of Operational Research,2020,283(1):290-307.
doi: 10.1016/j.ejor.2019.10.035 |
21 |
GONGZ W,XUX X,GUOW W,et al.Minimum cost consensus modelling under various linear uncertain-constrained scenarios[J].Information Fusion,2021,66,1-17.
doi: 10.1016/j.inffus.2020.08.015 |
22 |
DIAOW X,LIUY.Two-level consensus modeling with utility and cost constraints[J].Journal of Systems Engineering and Electronics,2022,33(3):716-726.
doi: 10.23919/JSEE.2022.000066 |
23 | 徐选华,肖婷.社会网络行为数据驱动的大群体应急决策共识模型[J].系统工程与电子技术,2023,45(7):2086-2097. |
XUX H,XIAOT.Consensus model of large group emergency decision-making driven by social network behavior data[J].Systems Engineering and Electronics,2023,45(7):2086-2097. | |
24 | 缑迅杰,邓富民,徐泽水.基于自信双层语言偏好关系的大规模群体共识决策方法及其应用研究[J].中国管理科学,2023,31(9):222-232. |
GOUX J,DENGF M,XUZ S.Large-scale group consensus decision-making method and its application research based on confident two-level language preference relationship[J].Chinese Management Science,2023,31(9):222-232. | |
25 | 张恒杰,朱文凤,董玉成.异质环境下基于最小冒犯准则的分类共识决策方法研究[J].系统工程理论与实践,2022,42(5):1378-1390. |
ZHANGH J,ZHUW F,DONGY C.Research on classification consensus decision-making method based on least offense criterion in heterogeneous environment[J].Systems Engineering Theory and Practice,2022,42(5):1378-1390. | |
26 | 赵士南,徐海燕,朱建军.基于决策者共识偏好的冲突分析图模型[J].控制与决策,2018,33(8):1497-1504. |
ZHAOS N,XUH Y,ZHUJ J.Conflict analysis graph model based on consensus preferences of decision makers[J].Control and Decision,2018,33(8):1497-1504. | |
27 |
XUH,ZHAOJ,KEG Y,et al.Matrix representation of consensus and dissent stabilities in the graph model for conflict resolution[J].Discrete Applied Mathematics,2019,259,205-217.
doi: 10.1016/j.dam.2018.12.006 |
28 | XUH,HIPELK W,KILGOURD M,et al.Conflict resolution using the graph model: strategic interactions in competition and cooperation[M].Cham:Spring,2018. |
29 |
NASHJ.Non-cooperative games[J].Annals of Mathematics,1951,54(2):286-295.
doi: 10.2307/1969529 |
30 | HOWARDN.Paradoxes of rationality: theory of metagames and political behavior[M].Cambridge:MIT Press,1971. |
31 |
FRASERN M,HIPELK W,FANGL.Solving complex conflicts[J].IEEE Trans.on Systems, Man, and Cybernetics,1979,9(12):805-817.
doi: 10.1109/TSMC.1979.4310131 |
32 |
REGOL C,VIEIRAG I A.Symmetric sequential stability in the graph model for conflict resolution with multiple decision makers[J].Group Decision and Negotiation,2017,26(4):775-792.
doi: 10.1007/s10726-016-9520-8 |
[1] | 陶良彦, 刘思峰, 方志耕, 陈顶. GERT网络的矩阵式表达及求解模型[J]. 系统工程与电子技术, 2017, 39(6): 1292-1297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||