系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (1): 173-181.doi: 10.12305/j.issn.1001-506X.2025.01.18

• 系统工程 • 上一篇    下一篇

基于改进ALNS算法的多交付选项路径规划

雷勤, 高颜兵, 周煜丰, 吴志彬   

  1. 四川大学商学院, 四川 成都 610065
  • 收稿日期:2023-12-21 出版日期:2025-01-21 发布日期:2025-01-25
  • 通讯作者: 吴志彬
  • 作者简介:雷勤(1998—), 男, 硕士研究生, 主要研究方向为车辆路径规划、机器学习与应用
    高颜兵(1997—), 男, 硕士研究生, 主要研究方向为车辆路径规划、机器学习与应用
    周煜丰(1997—), 男, 博士研究生, 主要研究方向为众包运营、机器学习
    吴志彬(1982—), 男, 教授, 博士, 主要研究方向为决策分析、商业分析、机器学习
  • 基金资助:
    国家自然科学基金面上项目(72371175);国家自然科学基金面上项目(71971148);中央高校基本科研业务费专项资金(SXYPY202334)

Multi-delivery option path planning based on improved ALNS algorithm

Qin LEI, Yanbing GAO, Yufeng ZHOU, Zhibin WU   

  1. Business School, Sichuan University, Chengdu 610065, China
  • Received:2023-12-21 Online:2025-01-21 Published:2025-01-25
  • Contact: Zhibin WU

摘要:

针对城市物流中日益凸显的客户个性化交付需求问题, 提出考虑交付满意度的路径规划问题。首先, 以客户对交付方式的个性化偏好排序作为客户满意度的度量, 建立旨在最小化运营总成本的优化模型, 其中涵盖电动汽车固定成本、旅途成本、充电成本以及因未能满足客户最早开始服务时间惩罚成本和地点偏好惩罚成本。其次, 针对大规模客户场景, 设计一种融合自适应大邻域搜索与禁忌搜索的混合启发式算法。最后, 运用基准数据分析验证模型的正确性和算法的有效性。结果表明, 基于多交付选项模型规划配送方案能帮助企业节省成本, 且只需要付出较小的成本就能实现较高的服务质量, 提高客户满意度。

关键词: 城市物流, 电车路径问题, 交付选项, 客户满意度, 自适应大邻域搜索算法, 禁忌搜索

Abstract:

To address the problem of personalized delivery requirements in urban logistics, a path planning problem considering delivery satisfaction is proposed. Firstly, taking the customer personalized preference ranking for customer delivery methods as a measure of customer satisfaction, an optimization model is constructed with the objective of minimizing the total operating cost. It covers the fixed cost of electric vehicle, travel cost, charging cost and penalty cost for failing to meet the earliest service start time and location preferences of customer. Secondly, a hybrid heuristic algorithm combining adaptive large neighborhood search with tabu search is designed to solve large-scale customer scenarios. Finally, the correctness of the model and effectivenes of the algorithm is verified by benchmark data analysis. Results indicate that making delivery plans based on multi-delivery option model can help enterprises reduce cost, requiring low cost to achieve higher service quality, and improve customer satisfaction.

Key words: urban logistics, electric vehicle routing problem, delivery option, customer satisfaction, adaptive large neighborhood search (ALNS) algorithm, tabu search (TS)

中图分类号: