1 |
MOREIRA A , PRATS-IRAOLA P , YOUNIS M , et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1 (1): 6- 43.
doi: 10.1109/MGRS.2013.2248301
|
2 |
ZHANG B C , HONG W , WU Y R . Sparse microwave imaging: principles and applications[J]. SCIENCE CHINA Information Sciences, 2012, 55 (8): 1722- 1754.
doi: 10.1007/s11432-012-4633-4
|
3 |
吴一戎, 洪文, 张冰尘. 稀疏微波成像导论[M]. 北京: 科学出版社, 2018.
|
|
WU Y R , HONG W , ZHANG B C . Introduction to sparse microwave imaging[M]. Beijing: Science Press, 2018.
|
4 |
XU G , ZHANG B J , YU H W , et al. Sparse synthetic aperture radar imaging from compressed sensing and machine learning: theories, applications, and trends[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10 (4): 32- 69.
doi: 10.1109/MGRS.2022.3218801
|
5 |
DONOHO D L . Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
6 |
沈笑云, 廖仙华, 孙卫天, 等. 可变先验贝叶斯学习稀疏SAR成像[J]. 系统工程与电子技术, 2021, 43 (7): 1781- 1790.
doi: 10.12305/j.issn.1001-506X.2021.07.07
|
|
SHEN X Y , LIAO X H , SUN W T , et al. Sparse SAR imaging based on varying prior Bayes learning[J]. Systems Engineering and Electronics, 2021, 43 (7): 1781- 1790.
doi: 10.12305/j.issn.1001-506X.2021.07.07
|
7 |
SAMADI S , CETIN M , MASNADI-SHIRAZI M A . Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5 (2): 182- 193.
|
8 |
HU C Y , WANG L , ZHU D Y , et al. Inverse synthetic aperture radar sparse imaging exploiting the group dictionary learning[J]. Remote Sensing, 2021, 13 (14): 2812.
doi: 10.3390/rs13142812
|
9 |
NASH C, MENICK J, DIELEMAN S, et al. Generating images with sparse representations[EB/OL]. [2023-11-27]. https://arxiv.org/abs/2103.03841.
|
10 |
NANAVATI S P , PANIGRAHI P K . Wavelet transform[J]. Resonance, 2004, 9 (3): 50- 64.
doi: 10.1007/BF02834988
|
11 |
SAMADI S , CETIN M , MASNADI-SHIRAZI M A . Multiple feature-enhanced SAR imaging using sparsity in combined dictionaries[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 10 (4): 821- 825.
|
12 |
SAMADI S, CETIN M, MASNADI-SHIRAZI M A. Multiple feature-enhanced synthetic aperture radar imaging[C]//Proc. of the Comference on Algorithms for Synthetic Aperture Radar Imagery XVI, 2009.
|
13 |
熊世超, 倪嘉成, 张群, 等. 基于混合稀疏表示的二维压缩感知SAR成像[J]. 北京航空航天大学学报, 2022, 48 (11): 2314- 2324.
|
|
XIONG S C , NI J C , ZHANG Q , et al. 2-D compressed sensing SAR imaging based on mixed sparse representation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (11): 2314- 2324.
|
14 |
AKHAVAN S , BAGHESTANI F , KAZEMI P , et al. Dictio-nary learning for sparse representation of signals with hidden Markov model dependency[J]. Digital Signal Processing, 2022, 123, 103420.
doi: 10.1016/j.dsp.2022.103420
|
15 |
NG S M , YAZID H , MUSTAFA N . Performance analysis on dictionary learning and sparse representation algorithms[J]. Multimedia Tools and Applications, 2022, 81 (12): 16455- 16476.
doi: 10.1007/s11042-022-12375-4
|
16 |
ENGAN K, AASE S O, HUSOY J H. Method of optimal directions for frame design[C]//Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999: 2443-2446.
|
17 |
AHARON M , ELAD M , BRUCKSTEIN A . K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Trans.on Signal Processing, 2006, 54 (11): 4311- 4322.
doi: 10.1109/TSP.2006.881199
|
18 |
SOGANLUI A, CETIN M. Dictionary learning for sparsity-driven SAR image reconstruction[C]// Proc. of the IEEE International Conference on Image Processing, 2014.
|
19 |
胡长雨, 汪玲, 朱栋强. 结合字典学习技术的ISAR稀疏成像方法[J]. 电子与信息学报, 2019, 41 (7): 1735- 1742.
|
|
HU C Y , WANG L , ZHU D Q . Sparse ISAR imaging exploiting dictionary learning[J]. Journal of Electronics & Information Technology, 2019, 41 (7): 1735- 1742.
|
20 |
FARHANGKHAH N , SAMADI S , KHOSRAVI M R , et al. Overcomplete pre-learned dictionary for incomplete data SAR imaging towards pervasive aerial and satellite vision[J]. Wireless Networks, 2024, 30 (5): 3989- 4001.
doi: 10.1007/s11276-021-02821-w
|
21 |
LIU Q P , CHENG Y Q , CAO K C , et al. Radar forward-looking imaging for complex targets based on sparse representation with dictionary learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4026605.
|
22 |
YANG M , ZHANG L , FENG X C , et al. Sparse representation based fisher discrimination dictionary learning for image classification[J]. International Journal of Computer Vision, 2014, 109 (3): 209- 232.
doi: 10.1007/s11263-014-0722-8
|
23 |
YÜCE G, ORTIZ-JIMÉNEZ G, BESBINAR B, et al. A structured dictionary perspective on implicit neural representations[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
|
24 |
DU H A , ZHANG Y G , MA L G , et al. Structured discriminant analysis dictionary learning for pattern classification[J]. Knowledge-Based Systems, 2021, 216, 106794.
doi: 10.1016/j.knosys.2021.106794
|
25 |
CANDES E J , ROMBERG J K , TAO T . Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59 (8): 1207- 1223.
doi: 10.1002/cpa.20124
|
26 |
BI H , BI G A , ZHANG B C , et al. Complex-image-based sparse SAR imaging and its equivalence[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (9): 5006- 5014.
doi: 10.1109/TGRS.2018.2803802
|
27 |
TIBSHIRANI R . Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58 (1): 267- 288.
doi: 10.1111/j.2517-6161.1996.tb02080.x
|
28 |
DAUBECHIES I , DEFRISE M , DE-MOL C . An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57 (11): 1413- 1457.
doi: 10.1002/cpa.20042
|
29 |
CUMMING I G , WONG F H . Digital processing of synthetic aperture radar data[M]. Boston: Artech House, 2005.
|
30 |
WANG Z , BOVIK A C , SHEIKH H R , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans.on Image Processing, 2004, 13 (4): 600- 612.
doi: 10.1109/TIP.2003.819861
|