系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (1): 94-100.doi: 10.12305/j.issn.1001-506X.2025.01.10

• 传感器与信号处理 • 上一篇    下一篇

基于结构化字典学习的判别稀疏微波成像方法

孟洋1,2,3, 周国如1,2,3, 李洁1,2,3, 张冰尘1,2,3,*   

  1. 1. 中国科学院空天信息创新研究院, 北京 100094
    2. 中国科学院空间信息处理与应用系统技术 重点实验室, 北京 100190
    3. 中国科学院大学电子电气与通信工程学院, 北京 100049
  • 收稿日期:2023-12-27 出版日期:2025-01-21 发布日期:2025-01-25
  • 通讯作者: 张冰尘
  • 作者简介:孟洋(1999—), 男, 硕士研究生, 主要研究方向为SAR信号处理、字典学习
    周国如(1997—), 女, 博士研究生, 主要研究方向为SAR信号处理、压缩感知、稀疏SAR成像
    李洁(1996—), 女, 博士研究生, 主要研究方向为TomoSAR信号处理、深度学习
    张冰尘(1973—), 男, 研究员, 博士, 主要研究方向为雷达系统、雷达信号处理、新体制雷达

Discriminative sparse microwave imaging method based on structured dictionary learning

Yang MENG1,2,3, Guoru ZHOU1,2,3, Jie LI1,2,3, Bingchen ZHANG1,2,3,*   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    2. Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China
    3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-12-27 Online:2025-01-21 Published:2025-01-25
  • Contact: Bingchen ZHANG

摘要:

基于字典学习的合成孔径雷达(synthetic aperture radar, SAR)稀疏微波成像方法面对多类别目标时, 字典中存在冗余信息导致成像准确性降低, 针对此问题提出一种基于结构化字典学习(structured dictionary learning, SDL)的判别稀疏微波成像方法。首先, 利用SDL面向多类别目标训练获得包含多个子字典的结构化字典, 每个子字典对应特定类别目标。其次, 结合结构化字典构建判别稀疏微波成像模型, 处理过程中根据不同子字典对目标的表征误差进行判别。最后, 根据判别结果选择对应类别子字典进行成像。实验结果表明, 与现有的成像方法相比, 所提算法在降采样的条件下能够更好地抑制伪影模糊, 提高成像的准确性。

关键词: 结构化字典学习, 合成孔径雷达, 稀疏微波成像, 稀疏表征

Abstract:

When dealing with multi-class targets, the sparse microwave imaging method of synthetic aperture radar (SAR) based on dictionary learning has redundant information in the dictionary, which leads to a decrease in imaging accuracy. To address this problem, a discriminative sparse microwave imaging method based on structured dictionary learning (SDL) is proposed. Firstly, using SDL to train for multi-class targets, a structured dictionary containing multiple sub-dictionaries is obtained, with each sub dictionary corresponding to a specific category of targets. Secondly, a discriminative sparse microwave imaging model is constructed by combining structured dictionaries, and the representation errors of the target are distinguished based on different sub-dictionaries during the processing. Finally, based on the discrimination results, the corresponding category sub-dictionary is selected for imaging. The experimental results show that compared with existing imaging methods, the proposed algorithm can better suppress artifact blurring and improve imaging accuracy under downsampling conditions.

Key words: structured dictionary learning (SDL), synthetic aperture radar (SAR), sparse microwave imaging, sparse representation

中图分类号: