系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (1): 52-61.doi: 10.12305/j.issn.1001-506X.2025.01.06

• 电子技术 • 上一篇    下一篇

面向无人机视角的多源信息融合目标检测

韩子硕1,2, 范喜全1, 付强2,*, 马传焱1, 张冬冬2   

  1. 1. 中国人民解放军32398部队, 北京 100192
    2. 陆军工程大学石家庄校区电子与光学工程系, 河北 石家庄 050003
  • 收稿日期:2023-09-10 出版日期:2025-01-21 发布日期:2025-01-25
  • 通讯作者: 付强
  • 作者简介:韩子硕(1986—), 男, 博士后, 主要研究方向为智能无人机系统、智能识别
    范喜全(1973—), 男, 高级工程师, 博士, 主要研究方向为无人机系统及应用
    付强(1981—), 男, 副教授, 博士, 主要研究方向为火力与指挥控制、智能目标识别
    马传焱(1973—), 男, 高级工程师, 博士, 主要研究方向为无人机系统及应用
    张冬冬(1993—), 男, 博士研究生, 主要研究方向为目标识别

Target detection based on multi-source information fusion from the perspective of drones

Zishuo HAN1,2, Xiquan FAN1, Qiang FU2,*, Chuanyan MA1, Dongdong ZHANG2   

  1. 1. Unit 32398 of the PLA, Beijing 100192, China
    2. Department of Electronic and Optical Engineering, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China
  • Received:2023-09-10 Online:2025-01-21 Published:2025-01-25
  • Contact: Qiang FU

摘要:

为提升复杂环境下面向无人机视角的目标检测效果, 提出一种基于多源信息融合的目标检测算法。该算法以可见光和红外图像为输入, 利用双支路Swin-Transformer结构分别提取两者多层级特征, 并以自主学习的方式分层级融合两者特征, 增进信息互补。在此基础上, 构建双向特征金字塔网络进一步深化浅层与深层特征融合, 充分获取目标多尺度信息。最后, 通过多个检测头在不同层级的特征图上独立预测目标, 提升检测器性能。多个公开数据集的仿真和对比实验表明, 所提算法不仅设定合理性能优越, 且具备良好的鲁棒性和泛化性。

关键词: 多源信息融合, 无人机, 特征融合, 目标检测

Abstract:

To enhance the target detection performance of drones in complex environments, a target detection method based on multi-source information fusion is proposed. This method takes visible light and infrared images as inputs, applies the dual-branch Swin-Transformer structure to extract multi-level features of the two, and autonomously fuses the features at different levels in a self-learning manner to enhance information complementarity. On this basis, a bidirectional feature pyramid network is constructed to facilitate the fusion of shallow and deep features, that allows to capture multi-scale information of the target. Finally, multi-scale detection heads are utilized to independently predict targets on feature maps at different levels to improve the performance of the detector. Simulation and comparative experiments on multiple public datasets show that the proposed algorithm not only exhibits reasonable settings and superior performance, but also showcases robustness and generalization capabilities.

Key words: multi-source information fusion, drone, feature fusion, object detection

中图分类号: