1 |
王波, 巫晨云, 杨晓露. 无人机应用难点分析及解决方案[J]. 通信与信息技术, 2024, (1):110-112.
|
|
WANG B , WU C Y , YANG X L . Analysis of difficulties and solutions for drone applications[J]. Communication and Information Technology, 2024, (1): 110- 112.
|
2 |
LUO D H , LIU G , PRASAD D , et al. Infrared and visible ima-ge fusion based on VPDE model and VGG network[J]. Applied Intelligence, 2023, 53 (21): 24739- 24764.
doi: 10.1007/s10489-023-04692-4
|
3 |
JEE S , KANG M G . Sensitivity improvement of extremely low light scenes with RGB-NIR multispectral filter array sensor[J]. Sensors, 2019, 19 (5): 1255- 1256.
doi: 10.3390/s19051255
|
4 |
YANG L Z, MA R H, ZAKHOR A. Drone object detection using RGB/IR fusion[EB/OL]. [2023-08-08]. https://arxiv.org/abs/2201.03786.
|
5 |
BAO C , CAO J , HAO Q , et al. Dual-YOLO architecture from infrared and visible images for object detection[J]. Sensors, 2023, 23 (6): 2306- 2934.
|
6 |
宁大海, 郑晟. 可见光和红外图像决策级融合目标检测算法[J]. 红外技术, 2023, 45 (3): 282- 291.
|
|
NING D H , ZHENG S . An object detection algorithm based on decision-level fusion of visible and infrared images[J]. Infrared Technology, 2023, 45 (3): 282- 291.
|
7 |
TANG C , LING Y S , YANG H , et al. Decision-level fusion detection for infrared and visible spectra based on deep learning[J]. Infrared and Laser Engineering, 2019, 48 (6): 626001.
doi: 10.3788/IRLA201948.0626001
|
8 |
JOSEPH R, ALI F. YOLOv3: an incremental improvement[EB/OL]. [2023-08-06]. https://arxiv.org/pdf/1804.02767.
|
9 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 9992-10002.
|
10 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-08-08]. https://arXivpreprintarXiv:1409.1556.
|
11 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
12 |
HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
doi: 10.1109/TPAMI.2019.2913372
|
13 |
NICOLAS C, FRANCISCO M, GABRIEL S, et al. End-to-end object detection with Transformers[EB/OL]. [2023-08-08]. https://arXivpreprintarXiv:2005.12872.
|
14 |
LEE J, LEE Y, KIM J, et al. Set Transformer: a framework for attention-based permutation-invariant neural networks[C]// Proc. of the 36th International Conference on Machine Learning, 2021.
|
15 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
|
16 |
DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13728-13737.
|
17 |
WANG Q , ZHOU L K , YAO Y C , et al. An interconnected feature pyramid networks for object detection[J]. Journal of Visual Communication and Image Representation, 2021, 79 (3): 103260.
|
18 |
HUANG G, LIU Z, LAURENS V D, et al. Densely connected convolutional networks[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.
|
19 |
LIN T, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-994.
|
20 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
|
21 |
SUN Y M , CAO B , ZHU P F , et al. Drone-based RGB-Infrared cross-modality vehicle detection via uncertainty-aware learning[J]. IEEE Trans. on Circuits and Systems for Video Technology, 2022, 32 (10): 6700- 6713.
doi: 10.1109/TCSVT.2022.3168279
|
22 |
张冬冬, 王春平, 付强. 基于特征增强网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2023, 45 (4): 1032- 1039.
|
|
ZHANG D D , WANG C P , FU Q . Ship target detection in SAR image based on feature-enhanced network[J]. Systems Engineering and Electronics, 2023, 45 (4): 1032- 1039.
|
23 |
YANG T L , LI J H . Remote sensing image object detection based on improved YOLOv3 in deep learning environment[J]. Journal of Circuits, Systems and Computers, 2023, 32 (15): 2350265.
doi: 10.1142/S0218126623502651
|
24 |
LIN T Y , GOYAL P , GIRSHICK R , et al. Focal loss for dense object detection[J]. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2020, 42 (2): 318- 327.
|
25 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
26 |
HE K M , GKIOXARI G , DOLLAR P , et al. Mask R-CNN[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 42 (2): 386- 397.
|
27 |
白玉, 侯志强, 刘晓义, 等. 基于可见光图像与红外图像决策级融合的目标检测算法[J]. 空军工程大学学报, 2020, 21 (6): 53- 59.
|
|
BAI Y , HOU Z Q , LIU X Y , et al. Target detection algorithm based on decision level fusion of visible image and infrared image[J]. Journal of Air Force Engineering University, 2020, 21 (6): 53- 59.
|
28 |
XIAO X W , WANG B , MIAO L J , et al. Infrared and visible image object detection via focused feature enhancement and cascaded semantic extension[J]. Remote Sensing, 2021, 13 (13): 2538.
doi: 10.3390/rs13132538
|
29 |
JIA X Y, ZHU C, LI M Z, et al. LLVIP: a visible-infrared paired dataset for low-light vision[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 3489-3497.
|
30 |
RAZAKARIVONY S , JURIE F . Vehicle detection in aerial imagery: a small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34, 187- 203.
doi: 10.1016/j.jvcir.2015.11.002
|