1 |
陈钱, 隋修宝. 红外图像处理理论与技术[M]. 北京: 电子工业出版社, 2018.
|
|
CHEN Q , SUI X B . Infrared image processing theory and technology[M]. Beijing: Publishing House of Electronics Industry, 2018.
|
2 |
REKAVANDI A M, RASHIDI S, BOUSSAID F, et al. Transformers in small object detection: a benchmark and survey of state-of-the-art[EB/OL]. [2023-09-01], https://arxiv.org/abs/2309.04902.
|
3 |
HASSAN S A, RAHIM T, SHIN S Y. Real-time UAV detection based on deep learning network[C]//Proc. of the International Conference on Information and Communication Technology Convergence, 2019.
|
4 |
OPROMALLA R , FASANO G , ACCARDO D . A vision-based approach to UAV detection and tracking in cooperative applications[J]. Sensors, 2018, 18 (10):3391.
doi: 10.3390/s18103391
|
5 |
KOU R , WANG C P , PENG Z M , et al. Infrared small target segmentation networks: a survey[J]. Pattern Recognition, 2023, 143, 109788.
doi: 10.1016/j.patcog.2023.109788
|
6 |
BAI X Z , CHEN Z G , ZHANG Y , et al. Infrared ship target segmentation based on spatial information improved FCM[J]. IEEE Trans. on Cybernetics, 2015, 46 (12): 3259-3271.
|
7 |
LIU Z Y , ZHOU F , CHEN X W , et al. Iterative infrared ship target segmentation based on multiple features[J]. Pattern Recognition, 2014, 47 (9): 2839- 2852.
doi: 10.1016/j.patcog.2014.03.005
|
8 |
DAI Y M , WU Y Q , ZHOU F , et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (11): 9813- 9824.
doi: 10.1109/TGRS.2020.3044958
|
9 |
甘春生. 星载遥感图像舰船检测方法研究[D]. 辽宁: 沈阳航空航天大学, 2016.
|
|
GAN C S. Research on ship detection methods in spaceborne remote sensing images[D]. Liaoning: Shenyang University of Aeronautics and Astronautics, 2016.
|
10 |
LEI S , ZOU Z X , LIU D G , et al. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features[J]. Infrared Physics & Technology, 2018, 91, 12- 17.
|
11 |
BAI X Z , ZHOU F G . Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2010, 43 (6): 2145- 2156.
doi: 10.1016/j.patcog.2009.12.023
|
12 |
LIU R M , LU Y H , GONG C L , et al. Infrared point target detection with improved template matching[J]. Infrared Phy-sics & Technology, 2012, 55 (4): 380- 387.
|
13 |
李海军, 孔繁程, 林云. 基于改进YOLOv5s的红外舰船检测算法[J]. 系统工程与电子技术, 2023, 45 (8): 2415- 2422.
|
|
LI H J , KONG F C , LIN Y . Infrared ship detection algorithm based on improved YOLOv5s[J]. Systems Engineering and Electronics, 2023, 45 (8): 2415- 2422.
|
14 |
潘为年. 基于深度学习的红外成像舰船目标检测方法研究[D]. 成都: 电子科技大学, 2021.
|
|
PAN W N. Research on infrared imaging ship target detection method based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
|
15 |
FENG C J, ZHONG Y J, GAO Y, et al. Tood: task-aligned one-stage object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 3490-3499.
|
16 |
THECKEDATH D , SEDAMKAR R R . Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks[J]. SN Computer Science, 2020, 1 (2): 79.
doi: 10.1007/s42979-020-0114-9
|
17 |
TIAN Z , CHEN C H , CHEN H , et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020, 44 (4): 1922- 1933.
|
18 |
ZHANG Y C , ZHANG W B , YU J Y , et al. Complete and accurate holly fruits counting using YOLOX object detection[J]. Computers and Electronics in Agriculture, 2022, 198, 107062.
doi: 10.1016/j.compag.2022.107062
|
19 |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
|
20 |
JU C , GUAN C T . Tensor-CSPNet: a novel geometric deep learning framework for motor imagery classification[J]. IEEE Trans. on Neural Networks and Learning Systems, 2022, 9, 4512- 4516.
|
21 |
XU W J, LONG C J, WANG R S, et al. DRB-GAN: a dyna-mic resblock generative adversarial network for artistic style transfer[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 6383-6392.
|
22 |
WANG Y J , LEE J G , MOON U C , et al. SSD-TSEFFM: new SSD using trident feature and squeeze and extraction feature fusion[J]. Sensors, 2020, 20 (13): 3630.
doi: 10.3390/s20133630
|
23 |
DELIANG X , XU Y H , CHENG J D , et al. An agorithm based on a feature interaction-based keypoint detector and sim-CSPNet for SAR image registration[J]. Journal of Radars, 2022, 11 (6): 1081- 1097.
|
24 |
ZHANG Y C , ZHANG W B , JI Y Y , et al. Complete and accurate holly fruits counting using YOLOX object detection[J]. Computers and Electronics in Agriculture, 2022, 198, 107062.
doi: 10.1016/j.compag.2022.107062
|
25 |
DEVER W G . The chronology of Syria-Palestine in the second millennium BCE: a review of current issues[J]. Bulletin of the American Schools of Oriental Research, 1992, 288 (1): 1- 25.
|
26 |
SONG G L, LIU Y, WANG X G. Revisiting the sibling head in object detector[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11563-11572.
|
27 |
FU A M , ZHANG X L , XIONG N X , et al. VFL: a verifiable federated learning with privacy-preserving for big data in industrial IOT[J]. IEEE Trans. on Industrial Informatics, 2020, 18 (5): 3316- 3326.
|
28 |
WANG Z H , LIU H , XU S X , et al. A diffraction measurement model and particle filter tracking method for RSS-based DFL[J]. IEEE Journal on Selected Areas in Communications, 2015, 33 (11): 2391- 2403.
|
29 |
LI X , WANG W H , WU L J , et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33, 21002- 21012.
|
30 |
RAZAQ A , HAYAT T , KHAN S A , et al. ATSS model based upon applications of Cattaneo-Christov thermal analysis for entropy optimized ternary nanomaterial flow with homogeneous-heterogeneous chemical reactions[J]. Alexandria Engineering Journal, 2023, 79, 390- 401.
|