系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (12): 4157-4164.doi: 10.12305/j.issn.1001-506X.2024.12.24

• 制导、导航与控制 • 上一篇    

基于改进RRT*算法的无人机在线航迹规划

张海阔, 孟秀云   

  1. 北京理工大学宇航学院, 北京 100081
  • 收稿日期:2024-01-15 出版日期:2024-11-25 发布日期:2024-12-30
  • 通讯作者: 张海阔
  • 作者简介:张海阔 (1999—), 男, 硕士研究生, 主要研究方向为飞行器任务规划
    孟秀云 (1964—), 女, 教授, 博士, 主要研究方向为飞行器动力学与控制、飞行器任务规划

UAV online trajectory planning based on improved RRT* algorithm

Haikuo ZHANG, Xiuyun MENG   

  1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2024-01-15 Online:2024-11-25 Published:2024-12-30
  • Contact: Haikuo ZHANG

摘要:

针对快速扩展随机树(rapidly-exploring random tree, RRT)*算法应用于无人机(unmanned aerial vehicle, UAV)航迹规划时采样效率低、收敛速度慢、航迹代价大的问题, 采用势场法引导树扩展加快算法收敛速度。采用优化算法重选父节点及重新布线,生成比RRT*算法代价更小的初始航迹。基于初始航迹构建启发式采样区域,以更有效地优化初始航迹, 给出一种改进RRT*算法; 基于模型预测控制, 设计航迹规划策略, UAV在飞行中能良好地应对环境中的动态威胁。数学仿真实验结果表明, 改进算法能快速地生成代价更小的初始航迹, 并在后续航迹优化的过程中更有效地减少航迹代价, 可被应用于无人机在线规划任务。

关键词: 航迹规划, RRT*算法, 模型预测控制, 势场法

Abstract:

In order to solve the problems of low sampling efficiency, slow convergence speed and high trajectory cost when the rapidly-exploring random tree (RRT)* algorithm is applied to unmanned aerial vehicle (UAV) trajectory planning, the potential field method is used to guide the tree expansion to accelerate the convergence speed of the algorithm. The optimization algorithm is applied to reselect the parent node and reroute the process to generate the initial trajectory with the cost which is reduced comparing with the cost of the RRT* algorithm. The heuristic sampling area is constructed based on the initial trajectory to optimize the initial trajectory more effectively, and an improved RRT* algorithm is proposed. Based on model predictive control (MPC), a trajectory planning strategy is designed to enable the UAV to respond well to dynamic threats in the environment during flight. Mathematical simulation results show that the improved algorithm can quickly generate an initial trajectory with less cost, and reduce the trajectory cost in the subsequent trajectory optimization process more effectively, which can be applied to the online planning task of UAV.

Key words: trajectory planning, RRT* algorithm, model predictive control (MPC), potential field

中图分类号: