3 |
JIAO H S , LI B , LIU Z X , et al. Electromagnetic scattering characteristics research of expandable polystyrene support in RCS measurement[J]. Acta Electronica Sinica, 2023, 51 (8): 2144- 2151.
|
4 |
张雷, 邓乐武, 邓杰文, 等. 近远场变换技术在目标特性测试中的应用[J]. 太赫兹科学与电子信息学报, 2022, 20 (4): 354- 358.
|
|
ZHANG L , DENG L W , DENG J W , et al. Application of near-far field transform technology in target characteristics test[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20 (4): 354- 358.
|
5 |
FAN C Q , WEI G , LI J Z . An electromagnetic scattering reana-lysis method for partial geometry modifications[J]. IET Microwaves, Antennas & Propagation, 2023, 17 (9): 701- 709.
|
6 |
LAURETIS M D , HALLER E , MURRO F D , et al. On the rectangular mesh and the decomposition of a Green's-function-based quadruple integral into elementary integrals[J]. Engineering Analysis with Boundary Elements, 2022, 134, 419- 434.
doi: 10.1016/j.enganabound.2021.09.029
|
7 |
JUNGEMANN C , MENG F , THOMSON M , et al. Massively parallel FDTD full-band Monte Carlo simulations of electromagnetic THz pulses in p-doped silicon at cryogenic temperatures[J]. Solid-State Electronics, 2022, 197, 108439.
doi: 10.1016/j.sse.2022.108439
|
8 |
何姿, 操龙潜, 丁大志, 等. 典型植被的高效电磁全波分析方法研究[J]. 系统工程与电子技术, 2021, 43 (10): 2725- 2732.
doi: 10.12305/j.issn.1001-506X.2021.10.04
|
|
HE Z , CAO L Q , DING D Z , et al. Study on electromagnetic analysis of an efficient full-wave numerical method for typical vegetation[J]. Systems Engineering and Electronics, 2021, 43 (10): 2725- 2732.
doi: 10.12305/j.issn.1001-506X.2021.10.04
|
9 |
杨鸿, 吴昊翔, 张玉, 等. 基于高阶矩量法的多层锥形频选罩建模与分析[J]. 微波学报, 2020, (S01): 23- 26.
|
|
YANG H , WU H X , ZHANG Y , et al. Modeling and analysis of multi-layer conical FSS radome based on high order method of moments[J]. Journal of Microwaves, 2020, (S01): 23- 26.
|
10 |
ZHENG J , HUANG H , ZHANG S , et al. A general method to simulate the electromagnetic characteristics of HTS maglev systems by finite element software[J]. IEEE Trans. on Applied Superconductivity, 2018, 28 (5): 3600808.
|
11 |
郑文军, 杨伟, 周礼来. 基于GPU并行技术的超大型海面舰船电磁散射仿真[J]. 电子科技大学学报, 2023, 52 (4): 549- 554.
|
|
ZHENG W J , YANG W , ZHOU L L . Electromagnetic scattering simulation of extremely electrically large sea-ship scene based on GPU parallel technology[J]. Journal of University of Electronic Science and Technology of China, 2023, 52 (4): 549- 554.
|
12 |
XIANG D P , BOTHA M M . MLFMM-based, fast multiple-reflection physical optics for large-scale electromagnetic scattering analysis[J]. Journal of Computational Physics, 2018, 368, 69- 91.
doi: 10.1016/j.jcp.2018.04.054
|
13 |
YAN J Z , YUE S J , CHONG H Z , et al. Fast computation of electromagnetic scattering characteristics from conducting targets using modified-physical optics and graphical electromagnetic computing[J]. Acta Physica Sinica, 2014, 63 (16): 164202.
doi: 10.7498/aps.63.164202
|
14 |
FERNANDEZ R R , GARCIA C L E , GOMEZ R I , et al. Fully coupled multi-hybrid FEM-PO/PTD-UTD method for the ana-lysis of radiation problems[J]. IEEE Trans. on Magnetics, 2007, 43 (4): 1341- 1344.
doi: 10.1109/TMAG.2007.892416
|
15 |
王童, 童创明, 王宜进, 等. 基于近场散射模型的超低空目标雷达回波模拟[J]. 系统工程与电子技术, 2022, 44 (1): 139- 145.
doi: 10.12305/j.issn.1001-506X.2022.01.18
|
|
WANG T , TONG C M , WANG Y J , et al. Radar echo simulation of ultra-low altitude target based on near-field scattering model[J]. Systems Engineering and Electronics, 2022, 44 (1): 139- 145.
doi: 10.12305/j.issn.1001-506X.2022.01.18
|
16 |
QI C H , YI Y , YANG W . An efficient high-frequency method of the EM near-field scattering from an electrically large target[J]. Frequenz, 2021, 75 (11/12): 487- 492.
|
17 |
UFIMTSEV P Y . Fundamentals of the physical theory of diff-raction[M]. Hoboken: Wiley, 2006.
|
18 |
CHAI S R , HE Z X , DAI P K , et al. Research on EM scattering characteristics of targets in land-sea junction area based on the hybrid method of SBR-MECA-PTD[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22 (12): 2817- 2820.
doi: 10.1109/LAWP.2023.3299990
|
19 |
LI J , LEI Z , LI X G , et al. Hybrid PO-SBR-PTD method for composite scattering of a vehicle target on the ground[J]. Applied Optics, 2021, 60 (1): 179- 185.
doi: 10.1364/AO.412893
|
20 |
DONG C L , GUO L X , MENG X , et al. An accelerated algorithm based on GO-PO/PTD and CWMFSM for EM scattering from the ship over a sea surface and SAR image formation[J]. IEEE Trans. on Antennas and Propagation, 2020, 68 (5): 3934- 3944.
doi: 10.1109/TAP.2019.2963241
|
21 |
DONG C L , GUO L X , MENG X , et al. An improved GO-PO/PTD hybrid method for EM scattering from electrically large complex targets[J]. IEEE Trans. on Antennas and Propagation, 2022, 70 (12): 12130- 12138.
doi: 10.1109/TAP.2022.3209195
|
22 |
SHENG X J , ZHANG Y , SHEN R , et al. A cylindrical equivalent source-based physical optics method for rapid analysis of airborne radomes[J]. IEEE Access, 2022, 10, 99282- 99289.
doi: 10.1109/ACCESS.2022.3207159
|
1 |
郁发新, 李宏博, 沈一鹰, 等. 高频电磁环境噪声测量与分析[J]. 系统工程与电子技术, 2002, 24 (11): 11- 13.
doi: 10.3321/j.issn:1001-506X.2002.11.004
|
|
YU F X , LI H B , SHEN Y Y , et al. Measurement and analysis of HF electromagnetic environmental noises[J]. Systems Engineering and Electronics, 2002, 24 (11): 11- 13.
doi: 10.3321/j.issn:1001-506X.2002.11.004
|
2 |
张乐锋, 吴建辉, 胡卫东. 雷达目标特性的毫米波紧缩场测量方法[J]. 系统工程与电子技术, 2014, 36 (7): 1275- 1281.
doi: 10.3969/j.issn.1001-506X.2014.07.09
|
|
ZHANG L F , WU J H , HU W D . MMW CATR measurement for target radar signature[J]. Systems Engineering and Electronics, 2014, 36 (7): 1275- 1281.
doi: 10.3969/j.issn.1001-506X.2014.07.09
|
3 |
焦海松, 李斌, 刘宗信, 等. RCS测量中聚苯乙烯泡沫支架的电磁散射特性研究[J]. 电子学报, 2023, 51 (8): 2144- 2151.
|
23 |
ZHOU Z Y , HUANG J , CHEN C , et al. Keen investigation of the electromagnetic scattering characteristics of tiltrotor aircraft based on dynamic calculation method[J]. Photonics, 2021, 8 (6): 175.
doi: 10.3390/photonics8060175
|
24 |
HUANG Y , ZHAO Z Q , QI C H , et al. Fast point-based KD-tree construction method for hybrid high frequency method in electromagnetic scattering[J]. IEEE Access, 2018, 10, 38348- 38355.
|
25 |
YANG W , QI C H , ZHANG Y Y , et al. Evaluation on EM scattering properties from a wind farm by an efficient high-frequency method[J]. IEEE Access, 2018, 6, 32425- 32429.
doi: 10.1109/ACCESS.2018.2837083
|
26 |
ZHOU G X , TONG C M , ZHU J , et al. Study on composite electromagnetic scattering characteristics of low-altitude target above valley composite rough surface using hybrid SBR-EEC method[J]. IEEE Access, 2020, 8, 72298- 72307.
doi: 10.1109/ACCESS.2020.2987651
|
27 |
郭小阳. 基于高频渐近法的目标散射特性快速计算方法研究[D]. 西安: 西安电子科技大学, 2021.
|
|
GUO X Y. Research on fast calculation method of target scattering characteristics based on high frequency asymptotic method[D]. Xi'an: Xidian University, 2021.
|
28 |
丁卫平, 徐金平. 带有腔体或槽缝的电大尺寸目标电磁散射特性分析[J]. 电子学报, 2002, 30 (6): 815- 818.
|
|
DING W P , XU J P . Evaluation of electromagnetic scattering by electrically large bodies with cracks and cavities on their surfaces[J]. Acta Electronica Sinica, 2002, 30 (6): 815- 818.
|
29 |
郭立新, 张民, 吴振森. 随机粗糙面与目标复合电磁散射的基本理论和方法[M]. 北京: 科学出版社, 2014.
|
|
GUO L X , ZHANG M , WU Z S . The basic theory and method of composite electromagnetic scattering between random rough surfaces and targets[M]. Beijing: Science Press, 2014.
|
30 |
ZHOU C , ZI H , SUN T P , et al. A local current based iterative physical optics method for computing the RCS of target above sea surface[J]. Engineering Analysis with Boundary Elements, 2023, 146, 318- 326.
doi: 10.1016/j.enganabound.2022.10.005
|
31 |
覃潇潇. 基于等效介质理论的目标电磁散射高频方法[D]. 武汉: 华中师范大学, 2020.
|
|
QIN X X. High frequency method of target electromagnetic scattering based on equivalent medium theory[D]. Wuhan: Central China Normal University, 2020.
|