系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (11): 3912-3919.doi: 10.12305/j.issn.1001-506X.2024.11.33

• 通信与网络 • 上一篇    下一篇

基于二值神经网络的辐射源信号识别方法

王慧赋1,2, 梅明飞1,2, 齐亮2, 柴恒3, 陶诗飞1,*   

  1. 1. 南京理工大学电子工程与光电技术学院, 江苏 南京 210094
    2. 南湖实验室, 浙江 嘉兴 314000
    3. 中国船舶集团有限公司第七二三研究所, 江苏 扬州 225000
  • 收稿日期:2023-07-31 出版日期:2024-10-28 发布日期:2024-11-30
  • 通讯作者: 陶诗飞
  • 作者简介:王慧赋(1998—), 男, 硕士研究生, 主要研究方向为辐射源信号识别、深度学习
    梅明飞(2000—), 男, 硕士研究生, 主要研究方向为雷达目标识别、深度学习
    齐亮(1981—), 男, 高级工程师, 硕士, 主要研究方向为无线通信技术、信号智能识别技术
    柴恒(1982—), 男, 高级工程师, 硕士, 主要研究方向为电子侦察设计
    陶诗飞(1987—), 男, 副教授, 硕士, 主要研究方向为雷达侦察、目标识别、电磁隐身技术
  • 基金资助:
    海洋防务基金资助课题

Radiation source signal recognition method based on binary neural networks

Huifu WANG1,2, Mingfei MEI1,2, Liang QI2, Heng CHAI3, Shifei TAO1,*   

  1. 1. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    2. Nanhu Laboratory, Jiaxing 314000, China
    3. 723 Research Institute, Shipbuilding Group Limited of China, Yangzhou 225000, China
  • Received:2023-07-31 Online:2024-10-28 Published:2024-11-30
  • Contact: Shifei TAO

摘要:

针对用于辐射源信号识别的神经网络存在参数冗余、运算量庞大等问题, 提出一种基于二值神经网络的辐射源信号识别方法。该方法指出利用卷积层效用值衡量神经网络卷积层的重要性, 根据卷积层效用值的大小, 将重要的卷积层保留为实值, 其余卷积层进行二值化处理。实验结果表明, 在信噪比大于-9 dB时, 采用该方法得到的二值神经网络的信号识别准确率相比于实值卷积神经网络降低了0.5%, 而网络参数内存大小降低了83.4%, 网络运算次数降低了83.8%, 网络运算复杂度降低了85.8%, 易于部署在各种硬件平台上。

关键词: 辐射源信号识别, 二值神经网络, 卷积层效用值, 网络复杂度

Abstract:

In response to the issues of parameter redundancy and high computational complexity in neural networks used for radiation source signal recognition, a radiation source signal recognition method based on binary neural network is proposed. The method proposes using the utility value of the convolution layer to measure the importance of the neural network's convolution layers. Based on the size of the utility value of the convolution layer, important convolution layers are retained as real values, while the remaining convolution layers are binarized. The experimental results show that when the signal-to-noise ratio is greater than -9 dB, the accuracy of signal recognition of the binary neural network obtained using this method is reduced by 0.5% compared to the real-valued convolutional neural network, while the network parameter memory size is reduced by 83.4%, the network computation is reduced by 83.8%, and the network computing complexity is reduced by 85.8%, and it is easy to deploy on various hardware platforms.

Key words: radiation source signal recognition, binary neural network, convolution layer utility value, network complexity

中图分类号: