1 |
YANG H H , YANG X P , LIU S K , et al. Radar emitter multi-label recognition based on residual network[J]. Defence Technology, 2022, 18 (3): 410- 417.
doi: 10.1016/j.dt.2021.02.005
|
2 |
刘赢, 田润澜, 王晓峰. 基于深层卷积神经网络和双谱特征的雷达信号识别方法[J]. 系统工程与电子技术, 2019, 41 (9): 1998- 2005.
doi: 10.3969/j.issn.1001-506X.2019.09.12
|
|
LIU Y , TIAN R L , WANG X F . Radar signal recognition method based on deep convolutional neural network and bispectral features[J]. Systems Engineering and Electronics, 2019, 41 (9): 1998- 2005.
doi: 10.3969/j.issn.1001-506X.2019.09.12
|
3 |
MUHAMMAD Y S , WANG J H , XV M M , et al. Ship detection based on deep learning using SAR imagery: a systematic literature review[J]. Soft Computing, 2023, 27 (1): 63- 84.
doi: 10.1007/s00500-022-07522-w
|
4 |
YAO Y , WANG Z H . Radar signal recognition based on time-frequency and CNN preprocessing[J]. Journal of Detection and Control, 2018, 40 (6): 99- 105.
|
5 |
SHI L M , YANG C Z . Recognition method of radar signal mo-dulation method based on deep network[J]. Journal of Ordnance Equipment Engineering, 2021, 42 (6): 190-193, 218.
doi: 10.11809/bqzbgcxb2021.06.033
|
6 |
崔邦彦, 田润澜, 王东风, 等. 基于注意力机制和改进CLDNN的雷达辐射源识别[J]. 系统工程与电子技术, 2021, 43 (5): 1224- 1231.
doi: 10.12305/j.issn.1001-506X.2021.05.09
|
|
CUI B Y , TIAN R L , WANG D F , et al. Radar emitter identification based on attention mechanism and improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43 (5): 1224- 1231.
doi: 10.12305/j.issn.1001-506X.2021.05.09
|
7 |
GAO J P , WANG X , WU R W , et al. A new modulation recognition method based on flying fish swarm algorithm[J]. IEEE Access, 2021, 9, 76689- 76706.
doi: 10.1109/ACCESS.2021.3079131
|
8 |
TAO S F , XIAO S , GONG S , et al. Recognition of electromagnetic signals based on the spiking convolutional neural network[J]. Wireless Communications and Mobile Computing, 2022, 2022, 2395996.
|
9 |
MUHAMMAD U, LEE J A. AMC-IoT: automatic modulation classification using efficient convolutional neural networks for low powered IoT devices[C]//Proc. of the International Confe-rence on Information and Communication Technology Convergence, 2020: 288-293.
|
10 |
WANG T Y, JIN Y H. Modulation recognition based on lightweight neural networks[C]//Proc. of the 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, 2020: 468-472.
|
11 |
ZHANG F X , LUO C B , XV J L , et al. An efficient deep learning model for automatic modulation recognition based on parameter estimation and transformation[J]. IEEE Communications Letters, 2021, 25 (10): 3287- 3290.
doi: 10.1109/LCOMM.2021.3102656
|
12 |
WANG N , LIU Y X , MA L , et al. Multidimensional CNN-LSTM network for automatic modulation classification[J]. Electronics, 2021, 10 (14): 1649.
doi: 10.3390/electronics10141649
|
13 |
权宇, 李志欣, 张灿龙, 等. 融合深度扩张网络和轻量化网络的目标检测模型[J]. 电子学报, 2020, 48 (2): 390- 397.
|
|
QUAN Y , LI Z X , ZHANG C L , et al. Fusing deep dilated convolutions network and light-weight network for object detection[J]. ACTA Electonica Sinica, 2020, 48 (2): 390- 397.
|
14 |
WANG Z W, ZHENG Q, LU J W, et al. Deep hashing with active pairwise supervision[C]//Proc. of the European Confe-rence on Computer Vision, 2020: 522-538.
|
15 |
WANG Z W, XIAO H, LU J W, et al. Generalizable mixed-precision quantization via attribution rank preservation[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 2-9.
|
16 |
GONG R H, LIU X L, JIANG S H, et al. Differentiable soft quantization: bridging full-precision and low-bit neural networks[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 4852-4861.
|
17 |
YANG J W, SHEN X, XING J, et al. Quantization networks[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7308-7316.
|
18 |
ULLRICH K, MEEDS E, WELLING M, et al. Soft weight sharing for neural network compression[C]//Proc. of the International Conference on Learning Representations, 2017.
|
19 |
ZHANG D Q, YANG J L, YE D Q, et al. LQ-nets: learned quantization for highly accurate and compact deep neural networks[C]//Proc. of the European Conference on Computer Vision, 2018: 365-382.
|
20 |
QIN H T , GONG R H , LIU X L , et al. Binary neural networks: a survey[J]. Pattern Recognition, 2020, 105, 1737- 1746.
|
21 |
CHEN T L, ZHANG Z Y, OUYANG X, et al. "BNN-BN=?": training binary neural networks without batch normalization[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4619-4629.
|
22 |
SHEN Z Q, LIU Z C, QIN J, et al. S2-BNN: bridging the gap between self-supervised real and 1-bit neural networks via guided distribution calibration[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2165-2174.
|
23 |
XUE P , LU Y , CHANG J F , et al. Self-distribution binary neural networks[J]. Applied Intelligence, 2022, 52 (12): 13870- 13882.
doi: 10.1007/s10489-022-03348-z
|
24 |
WANG Z W , LU J W , WU Z Y , et al. Learning efficient binarized object detectors with information compression[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 3082- 3095.
doi: 10.1109/TPAMI.2021.3050464
|
25 |
JI H, XU W Y, GAN L, et al. Modulation recognition based on lightweight residual network via binary quantization[C]//Proc. of the 7th International Conference on Computer and Communications, 2021: 154-158.
|
26 |
RASTEGARI M, ORDONEZ V, REDMON J, et al. Xnor-net: imagenet classification using binary convolutional neural networks[C]//Proc. of the European Conference on Computer Vision, 2016: 525-542.
|
27 |
HUANG D K , YAN X P , HAO X H , et al. Low SNR multi-emitter signal sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the YOLOv5 deep learning model[J]. Sensors, 2022, 22 (20): 7783.
doi: 10.3390/s22207783
|
28 |
肖帅, 龚帅阁, 李想, 等. FPGA平台轻量化卷积神经网络辐射源信号识别方法[J]. 计算技术与自动化, 2023, 42 (4): 140- 146.
|
|
XIAO S , GONG S G , LI X , et al. Emitter signal identification method with lightweight CNN on FPGA platform[J]. Computing Technology and Automation, 2023, 42 (4): 140- 146.
|
29 |
PAVLO M, STEPHEN T, TERO K, et al. Pruning convolutional neural networks for resource efficient inference[EB/OL]. [2023-05-31]. https://arxiv.org/abs/1611.06440.
|
30 |
BOYD S , PARIKH N , CHU E , et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3 (1): 1- 122.
|
31 |
王子为, 鲁继文, 周杰. 基于自适应梯度优化的二值神经网络[J]. 电子学报, 2023, 51 (2): 257- 266.
|
|
WANG Z W , LU J W , ZHOU J . Learning adaptive gradients for binary neural networks[J]. ACTA Electonica Sinica, 2023, 51 (2): 257- 266.
|