1 |
LEWIS H , RADTKE J , ROSSI A , et al. Sensitivity of the space debris environment to large constellations and small satellites[J]. Journal of the British Interplanetary Society, 2017, 70 (2/4): 105- 117.
|
2 |
OLIVIERIL , FRANCESCONI A . Large constellations assessment and optimization in LEO space debris environment[J]. Advances in Space Research, 2020, 65 (1): 351- 363.
doi: 10.1016/j.asr.2019.09.048
|
3 |
BERNHARD P , DESCHAMPS M , ZACCOUR G . Large satellite constellations and space debris: exploratory analysis of strategic management of the space commons[J]. European Journal of Operational Research, 2023, 304 (3): 1140- 1157.
doi: 10.1016/j.ejor.2022.04.030
|
4 |
ZHANG W , WANG X H , CUI W , et al. Self-induced collision risk of the Starlink constellation based on long-term orbital evolution analysis[J]. Astrodynamics, 2023, 7 (4): 445- 453.
doi: 10.1007/s42064-023-0171-7
|
5 |
SOARES T, MORALES S S, CATTANI B, et al. ESA's zero debris approach: a responsible path to mitigate space debris in valuable orbits[C]//Proc. of the 2nd International Orbital Debris Conference, 2023: 6059.
|
6 |
CARNS M G . Orbital debris prevention and mitigation efforts among major space actors[M]. Boston: Brill Nijhoff, 2023.
|
7 |
KEBSCHULL C, RADTKE J, KRAG H. Deriving a priority list based on the environmental criticality[C]//Proc. of the 65th International Astronautical Congress, 2014.
|
8 |
ANSELMO L , PARDINI C . Ranking upper stages in low Earth orbit for active removal[J]. Acta Astronautica, 2016, 122, 19- 27.
doi: 10.1016/j.actaastro.2016.01.019
|
9 |
ANSELMO L, PARDINI C. An index for ranking active debris removal targets in LEO[C]//Proc. of the 7th European Conference on Space Debris, 2017: 18-21.
|
10 |
ANSELMO L , PARDINI C . Compliance of the Italian satellites in low earth orbit with the end-of-life disposal guidelines for space debris mitigation and ranking of their long-term criticality for the environment[J]. Acta Astronautica, 2015, 114, 93- 100.
doi: 10.1016/j.actaastro.2015.04.024
|
11 |
ROSSI A , VALSECCHI G B , ALESSI E M . The criticality of spacecraft index[J]. Advances in Space Research, 2015, 56 (3): 449- 460.
doi: 10.1016/j.asr.2015.02.027
|
12 |
LETIZIA F , COLOMBO C , LEWIS H G , et al. Assessment of breakup severity on operational satellites[J]. Advances in Space Research, 2016, 58 (7): 1255- 1274.
doi: 10.1016/j.asr.2016.05.036
|
13 |
LEONARD R , WILLIAMS I D . Viability of a circular economy for space debris[J]. Waste Management, 2023, 155, 19- 28.
doi: 10.1016/j.wasman.2022.10.024
|
14 |
COLVIN T J, KARCZ J, WUSK G. Cost and benefit analysis of orbital debris remediation[EB/OL]. [2024-03-13]. https://www.nasa.gov/wp-content/uploads/2023/03/otps_-_cost_and_benefit_analysis_of_orbital_debris_remediation_-_final.pdf?emrc=507712.
|
15 |
HUDSON J . KESSYM: a stochastic orbital debris model for evaluation of Kessler Syndrome risks and mitigations[J]. Journal of Student Research, 2023, 12 (1): 1- 12.
|
16 |
RAO A, RONDINA G. The economics of orbit use: open access, external costs, and runaway debris growth[EB/OL]. [2024-03-13]. https://arxiv.org/pdf/2202.07442.
|
17 |
HENRY S , ARMELLIN R , GATEAU T . Safe-event pruning in spacecraft conjunction management[J]. Astrodynamics, 2023, 7 (4): 401- 413.
doi: 10.1007/s42064-023-0165-5
|
18 |
JOHNSON N L , KRISKO P H , LIOU J C , et al. NASA's new breakup model of EVOLVE 4.0[J]. Advances in Space Research, 2001, 28 (9): 1377- 1384.
doi: 10.1016/S0273-1177(01)00423-9
|
19 |
KRISKO P H . Proper implementation of the 1998 NASA breakup model[J]. Orbital Debris Quarterly News, 2011, 15 (4): 1- 10.
|
20 |
JOHANNES G. DRAMA final report[EB/OL]. [2024-03-23]. https://sdup.esa.int/drama/downlads.
|
21 |
DELUCA L T, LAVAGNA M, MAGGI F, et al. Active removal of large massive objects by hybrid propulsion module[C]// Proc. of the 5th European Conference for Aero-Space Sciences, 2013.
|
22 |
PARDINI C , ANSELMO L . Review of past on-orbit collisions among cataloged objects and examination of the catastrophic fragmentation concept[J]. Acta Astronautica, 2014, 100, 30- 39.
doi: 10.1016/j.actaastro.2014.03.013
|
23 |
PARDINI C, ANSELMO L. Review of the uncertainty sources affecting the long-term predictions of space debris evolutionary models[C]//Proc. of the 3rd European Workshop on Space Debris Modelling and Remediation, 2014: 16-18.
|
24 |
JOHNSON N L , MCKNIGHT D S . Artificial space debris[J]. Bulletin of the Astronomical Institutes of Czechoslovakia, 1988, 39 (4): 264.
|
25 |
BROYDEN C G . A class of methods for solving nonlinear simu- ltaneous equations[J]. Mathematics of Computation, 1965, 19 (92): 577- 593.
doi: 10.1090/S0025-5718-1965-0198670-6
|
26 |
FLETCHER R . A new approach to variable metric algorithms[J]. The Computer Journal, 1970, 13 (3): 317- 322.
doi: 10.1093/comjnl/13.3.317
|
27 |
SHANNO D F . Conditioning of quasi-Newton methods for function minimization[J]. Mathematics of Computation, 1970, 24 (111): 647- 656.
doi: 10.1090/S0025-5718-1970-0274029-X
|
28 |
ROSSI A , PETIT A , MCKNIGHT D . Short-term space safety analysis of LEO constellations and clusters[J]. Acta Astronautica, 2020, 175, 476- 483.
doi: 10.1016/j.actaastro.2020.06.016
|
29 |
WILSON C, MCKISSOCK D. 18 SDS small satellite support[EB/OL]. [2024-03-13]. https://digitalcommons.usu.edu/smallsat/2022/all2022/124/.
|
30 |
National Aeronautics and Space Administration. NASA spacecraft conjunction assessment and collision avoidance best practices handbook[R]. Washington, D.C. : National Aeronautics and Space Administration, 2020.
|
31 |
JEONGAHN Y , MALHOTRA R . Simplified derivation of the collision probability of two objects in independent Keplerian orbits[J]. The Astronomical Journal, 2017, 153 (5): 235.
doi: 10.3847/1538-3881/aa6aa7
|