1 |
CHENG X , SHI W P , CAI W L , et al. Communication-efficient coordinated RSS-based distributed passive localization via drone cluster[J]. IEEE Trans.on Vehicular Technology, 2022, 71 (1): 1072- 1076.
doi: 10.1109/TVT.2021.3125361
|
2 |
张阳, 司光亚, 王艳正. 无人机集群网电攻击行动协同目标分配建模[J]. 系统工程与电子技术, 2019, 41 (9): 2025- 2033.
doi: 10.3969/j.issn.1001-506X.2019.09.15
|
|
ZHANG Y , SI G Y , WANG Y Z . Modeling of cooperative target allocation of the UAV swarm cyberspace attack action[J]. Systems Engineering and Electronics, 2019, 41 (9): 2025- 2033.
doi: 10.3969/j.issn.1001-506X.2019.09.15
|
3 |
柳强, 何明, 刘锦涛, 等. 无人机"蜂群"的蜂拥涌现行为识别与抑制机理[J]. 电子学报, 2019, 47 (2): 374- 381.
doi: 10.3969/j.issn.0372-2112.2019.02.017
|
|
LIU Q , HE M , LIU J T , et al. A mechanism for identifying and suppressing the emergent flocking behaviors of UAV swarms[J]. Acta Electonica Sinica, 2019, 47 (2): 374- 381.
doi: 10.3969/j.issn.0372-2112.2019.02.017
|
4 |
WANG H C , DING G R , CHEN J , et al. UAV anti-jamming communications with power and mobility control[J]. IEEE Trans.on Wireless Communications, 2023, 22 (7): 4729- 4744.
doi: 10.1109/TWC.2022.3228265
|
5 |
GAO N , QIN Z J , JING X J , et al. Anti-intelligent UAV jamming strategy via deep Q-networks[J]. IEEE Trans.on Communications, 2020, 68 (1): 569- 581.
doi: 10.1109/TCOMM.2019.2947918
|
6 |
LAYEB A , BENAYAD , ZEYNEB . A novel firefly algorithm based ant colony optimization for solving combinatorial optimization problems[J]. International Journal of Computer Science and Applications, 2014, 11 (2): 19- 37.
|
7 |
GHORBANI M K , AFSHAR A , HAMIDIFAR H , et al. A fuzzy multi-objective multiple-pollutant model for rivers using an ant colony algorithm[J]. Proceedings of the Institution of Civil Engineers: Water Management, 2022, 175 (4): 190- 205.
doi: 10.1680/jwama.20.00081
|
8 |
ARRAM A , AYOB M . A novel multi-parent order crossover in genetic algorithm for combinatorial optimization problems[J]. Compu-ters and Industrial Engineering, 2019, 133 (8): 267- 274.
|
9 |
ZHANG H G , LIU Y A , ZHOU J . Balanced-evolution genetic algorithm for combinatorial optimization problems: the general outline and implementation of balanced-evolution strategy based on linear diversity index[J]. Natural Computing, 2018, 17 (3): 611- 639.
doi: 10.1007/s11047-018-9670-5
|
10 |
KIM J W , KIM S K . Fitness switching genetic algorithm for solving combinatorial optimization problems with rare feasible solutions[J]. Journal of Supercomputing, 2016, 72 (9): 235- 248.
|
11 |
HSIEH F S , GUO Y H . A discrete cooperatively coevolving particle swarm optimization algorithm for combinatorial double auctions[J]. Applied Intelligence, 2019, 49 (11): 3845- 3863.
doi: 10.1007/s10489-019-01556-8
|
12 |
GENG R M , JI R X , ZI S J . Research on task allocation of UAV cluster based on particle swarm quantization algorithm[J]. Mathematical Biosciences and Engineering, 2023, 20 (1): 18- 33.
|
13 |
汪民乐, 范阳涛. 基于效果的常规导弹火力规划模型智能求解算法[J]. 系统工程与电子技术, 2017, 39 (11): 2509- 2514.
doi: 10.3969/j.issn.1001-506X.2017.11.17
|
|
WANG M L , FAN Y T . Intelligent solving algorithm for effects-based firepower allocation model of conventional missiles[J]. Systems Engineering and Electronics, 2017, 39 (11): 2509- 2514.
doi: 10.3969/j.issn.1001-506X.2017.11.17
|
14 |
孙海文, 谢晓方, 孙涛, 等. 改进型布谷鸟搜索算法的防空火力优化规划模型求解[J]. 兵工学报, 2019, 40 (1): 189- 197.
doi: 10.3969/j.issn.1000-1093.2019.01.022
|
|
SUN H W , XIE X F , SUN T , et al. Improved cuckoo search algorithm for solving antiaircraft weapon-target optimal assignment model[J]. Acta Armamentarii, 2019, 40 (1): 189- 197.
doi: 10.3969/j.issn.1000-1093.2019.01.022
|
15 |
孙海文, 谢晓方, 庞威, 等. 基于改进火力规划模型的综合防空火力智能优化规划[J]. 控制与决策, 2020, 35 (5): 1102- 1112.
|
|
SUN H W , XIE X F , PANG W , et al. Integrated air defense firepower intelligence optimal assignment based on improved firepower assignment model[J]. Control and Decision, 2020, 35 (5): 1102- 1112.
|
16 |
KALLESTAD J , HASIBI R , HEMMATI A , et al. A general deep reinforcement learning hyper heuristic framework for solving combinatorial optimization problems[J]. European Journal of Operational Research, 2023, 309 (1): 446- 468.
doi: 10.1016/j.ejor.2023.01.017
|
17 |
WANG H L , WU H J , LAI G M . WagerWin: an efficient reinforcement learning framework for gambling games[J]. IEEE Trans.on Games, 2023, 15 (3): 483- 491.
doi: 10.1109/TG.2022.3226526
|
18 |
INSEOK O , SEUNGEUN M , SANGBIN M , et al. Creating pro-level AI for a real-time fighting game using deep reinforcement learning[J]. IEEE Trans.on Games, 2022, 14 (2): 212- 220.
doi: 10.1109/TG.2021.3049539
|
19 |
LI X J , LIU H S , DONG M H . A general framework of motion planning for redundant robot manipulator based on deep reinforcement learning[J]. IEEE Trans.on Industrial Informatics, 2022, 18 (8): 5253- 5263.
|
20 |
FAN F , XU G L , FENG N , et al. Spatiotemporal path tracking via deep reinforcement learning of robot for manufacturing internal logistics[J]. Journal of Manufacturing Systems, 2023, 69 (31): 150- 169.
|
21 |
DENG Y , LI Y L , DING B L , et al. Leveraging long short-term user preference in conversational recommendation via multi-agent reinforcement learning[J]. IEEE Trans.on Know-ledge and Data Engineering, 2023, 35 (11): 11541- 11555.
|
22 |
YANG Y C , CHRN C T , LU T Y , et al. Hierarchical reinforcement learning for conversational recommendation with knowledge graph reasoning and heterogeneous questions[J]. IEEE Trans.on Services Computing, 2023, 16 (5): 3439- 3452.
|
23 |
OUNOUGHI C , OUNOUGHI D , BEN Y S . EcoLight+: a novel multi-modal data fusion for enhanced eco-friendly traffic signal control driven by urban traffic noise prediction[J]. Knowledge and Information Systems, 2023, 65 (12): 5309- 5329.
|
24 |
HOU Y P , HE H S , JIANG X F , et al. Deep-reinforcement-learning-aided loss-tolerant congestion control for 6LoWPAN networks[J]. IEEE Internet of Things Journal, 2023, 10 (21): 19125- 19140.
|
25 |
WU Y Q , LIAO S Q , LIU X , et al. Deep reinforcement learning on autonomous driving policy with auxiliary critic network[J]. IEEE Trans.on Neural Networks and Learning Systems, 2023, 34 (7): 2680- 3690.
|
26 |
CUI J P , YUAN L , HE L , et al. Multi-input autonomous driving based on deep reinforcement learning with double bias experience replay[J]. IEEE Sensors Journal, 2023, 23 (11): 11253- 11261.
|
27 |
LIEN S Y , DENG D J . Intelligent session management for URLLC in 5G open radio access network: a deep reinforcement learning approach[J]. IEEE Trans.on Industrial Informatics, 2023, 19 (2): 1844- 1853.
|
28 |
ZANGOOEI M , SAHA N , GOLKARIFARD M , et al. Reinforcement learning for radio resource management in RAN slicing: a survey[J]. IEEE Communications Magazine, 2023, 61 (2): 118- 124.
|
29 |
朱建文, 赵长见, 李小平, 等. 基于强化学习的集群多目标分配与智能决策方法[J]. 兵工学报, 2021, 42(9): 2040-2048.
|
|
ZHU J W, ZHAO C J, LI X P, et al. Multi-target assignment and intelligent decision based on reinforcement learning[J]. 2021, 42(9): 2040-2048.
|
30 |
黄亭飞, 程光权, 黄魁华, 等. 基于DQN的多类型拦截装备复合式反无人机任务分配方法[J]. 控制与决策, 2022, 37 (1): 142- 150.
|
|
HUANG T F , CHENG G Q , HUANG K H , et al. Task assignment method of compound anti-drone based on DQN for multi type interception equipment[J]. Control and Decision, 2022, 37 (1): 142- 150.
|
31 |
SHOAIB M , UMAR M S . Phishing detection model using feline finch optimisation-based LSTM classifier[J]. International Journal of Sensor Networks, 2023, 42 (4): 205- 220.
|
32 |
XIE G L , ZHANG W , HU Z , et al. Upper confident bound advantage function proximal policy optimization[J]. Cluster Computing, 2023, 26 (3): 2001- 2010.
|
33 |
TAO C Q , LIN K , HUANG Z Q , et al. CRAM: code recommendation with programming context based on self- attention mechanism[J]. IEEE Trans.on Reliability, 2023, 72 (1): 302- 316.
|
34 |
LIOU T S , WANG M J . Ranking fuzzy numbers with integral value[J]. Fuzzy Sets and Systems, 1992, 50 (3): 247- 255.
|