系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (11): 3754-3763.doi: 10.12305/j.issn.1001-506X.2024.11.17

• 系统工程 • 上一篇    下一篇

基于改进能量谷优化的多无人机空战目标分配

张嘉辉, 蒙志君, 何家政, 王子琛, 林尤深   

  1. 北京航空航天大学航空科学与工程学院, 北京 100083
  • 收稿日期:2023-07-07 出版日期:2024-10-28 发布日期:2024-11-30
  • 通讯作者: 蒙志君
  • 作者简介:张嘉辉(1997—), 男, 博士研究生, 主要研究方向为无人机自主空战决策
    蒙志君(1982—), 男, 教授, 博士, 主要研究方向为无人机人工智能
    何家政(2001—), 男, 硕士研究生, 主要研究方向为无人机自主空战决策
    王子琛(1998—), 男, 博士研究生, 主要研究方向为无人机路径规划、未知环境探索
    林尤深(2000—), 男, 硕士研究生, 主要研究方向为无人机定位与建图
  • 基金资助:
    国家自然科学基金(61976014);航空科学基金(2022Z071051001)

Multi-UAV air combat target allocation based on improved energy valley optimization

Jiahui ZHANG, Zhijun MENG, Jiazheng HE, Zichen WANG, Youshen LIN   

  1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China
  • Received:2023-07-07 Online:2024-10-28 Published:2024-11-30
  • Contact: Zhijun MENG

摘要:

针对多无人机空战目标分配问题, 提出一种基于改进能量谷优化的多无人机空战目标分配方法。首先, 建立无人机空战态势评估模型, 对多无人机空战目标分配问题进行数学建模。然后, 在能量谷优化算法的基础上, 对算法中粒子衰变过程进行改进, 使能量谷优化算法适用于离散型优化问题, 并提出混沌映射初始化和二进制改进两种改进措施。最后, 分别开展消融实验与有效性实验对所提方法的有效性进行验证。仿真结果表明, 所提改进措施对于在无人机目标分配任务中能量谷优化算法的算法效果具有一定的提升, 且改进能量谷优化算法能够适用于多无人机空战目标分配问题, 在多无人机空战中具有一定的应用意义。

关键词: 多无人机空战, 目标分配, 能量谷优化, 态势评估

Abstract:

To solve the problem of multi-unmanned aerial vehicle (UAV) air combat target allocation, this paper proposes a multi-UAV air combat target allocation method based on improved energy valley optimization. Firstly, the UAV air combat situation assessment model is established, and the multi-UAV air combat target allocation problem is mathematically modeled based on the UAV air combat situation assessment model. Then, on the basis of the energy valley optimization algorithm, the particle decay process in the algorithm is improved, so that the energy valley optimization algorithm is suitable for discrete optimization problems. Two improvement measures, namely chaotic mapping and binary improvement, are proposed. Finally, elimination experiments and effectiveness experiments are designed to verify the effectiveness of the proposed method. The simulation results show that the proposed improvement measures enhance the algorithm performance of energy valley optimization algorithm in UAV target allocation. Moreover, the improved energy valley optimization algorithm can be applied to solve the multi-UAV air combat target allocation problem, and has certain application significance in multi-UAV air combat.

Key words: multi-unmanned aerial vehicle (UAV) air combat, target allocation, energy valley optimization, situation assessment

中图分类号: