系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (11): 3690-3702.doi: 10.12305/j.issn.1001-506X.2024.11.11
刘俊1, 任杰1, 赤丰华2,*, 罗世彬1, 郑盛贤1, 宋佳文1
收稿日期:
2024-01-19
出版日期:
2024-10-28
发布日期:
2024-11-30
通讯作者:
赤丰华
作者简介:
刘俊 (1986—), 男, 副教授, 博士, 主要研究方向为空天飞行器气动布局设计、飞行器气动优化设计基金资助:
Jun LIU1, Jie REN1, Fenghua CHI2,*, Shibin LUO1, Shengxian ZHENG1, Jiawen SONG1
Received:
2024-01-19
Online:
2024-10-28
Published:
2024-11-30
Contact:
Fenghua CHI
摘要:
为了降低高速飞行器的雷达散射截面(radar cross section, RCS), 采用多层快速多极子算法和物理光学法研究局部外形参数对飞行器雷达散射特性的影响。在此基础上, 提出一种变半径弧形的边缘钝化形式, 以提高飞行器仰视对抗能力。所提出的变半径弧形钝化外形具有良好的RCS减缩能力, 与传统圆弧钝化外形相比, 在前向重点角域内, RCS对数均值降低了22.88%;随着仰角的增大, 变半径弧形钝化形式还具备全向RCS减缩能力, 在全向角域内RCS对数均值降低了13.37%。最后, 研究所提出的变半径弧形钝化方式在不同雷达波频段下的RCS特性, 结果表明这种钝化方式对于频率较高时仰视对抗能力更好。
中图分类号:
刘俊, 任杰, 赤丰华, 罗世彬, 郑盛贤, 宋佳文. 局部外形参数对高速飞行器的RCS影响[J]. 系统工程与电子技术, 2024, 46(11): 3690-3702.
Jun LIU, Jie REN, Fenghua CHI, Shibin LUO, Shengxian ZHENG, Jiawen SONG. Effect of local shape parameters on RCS of high-speed vehicle[J]. Systems Engineering and Electronics, 2024, 46(11): 3690-3702.
表8
不同仰角下圆弧钝化与变半径弧形钝化的对数RCS均值统计"
仰角/(°) | 前向对数RCS均值 | 全向对数RCS均值 | |||||
圆弧 | 变半径弧形 | 减缩量 | 圆弧 | 变半径弧形 | 减缩量 | ||
0 | -26.14 | -29.00 | 2.86 | -26.80 | -26.96 | 0.16 | |
5 | -26.03 | -29.86 | 3.83 | -26.76 | -28.15 | 1.39 | |
10 | -26.01 | -31.02 | 5.01 | -26.63 | -29.21 | 2.58 | |
15 | -25.98 | -31.38 | 5.40 | -27.11 | -30.58 | 3.47 | |
20 | -25.95 | -32.01 | 6.06 | -27.11 | -30.78 | 3.67 | |
25 | -25.81 | -32.61 | 6.80 | -27.22 | -32.00 | 4.78 | |
30 | -25.43 | -33.07 | 7.64 | -27.63 | -33.15 | 5.52 | |
35 | -25.46 | -33.20 | 7.74 | -27.23 | -32.81 | 5.58 | |
40 | -25.63 | -33.48 | 7.85 | -27.22 | -32.68 | 5.46 | |
平均 | -25.83 | -31.74 | 5.91 | -27.08 | -30.70 | 3.62 |
1 | AN F X , LI L , SU W , et al. Key issues in hypersonic vehicle aerodynamic design[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2021, 51 (10): 104702. |
2 | TAKAHASHI T T, GRIFFIN J A, GRANDHI R V. A review of high-speed aircraft stability and control challenges[C]//Proc. of the AIAA AVIATION 2023 Forum, 2023: 3231. |
3 |
LUO S B , SUN Y H , LIU J , et al. Performance analysis of the hypersonic vehicle with dorsal and ventral intake[J]. Aerospace Science and Technology, 2022, 131, 107964.
doi: 10.1016/j.ast.2022.107964 |
4 |
XU D G , LIU J S , LUO S , et al. Development status and trend of stealth technology of tactical missiles[J]. Journal of Physics: Conference Series, 2023, 2460 (1): 012064.
doi: 10.1088/1742-6596/2460/1/012064 |
5 | WHITFORD R. Designing for stealth in fighter aircraft (stealth from the aircraft designer's viewpoint)[C]//Proc. of the World Aviation Congress & Exposition, 1996: 965540. |
6 | 桑健华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013. |
SANG J H . Aircraft stealth technology[M]. Beijing: Aviation Industry Press, 2013. | |
7 | KAPUR V . Stealth technology and its effect on aerial warfare[M]. New Delhi: Institute for Defence Studies and Analyses, 2014. |
8 | ZIKIDIS K , SKONDRAS A , TOKAS C . Low observable principles, stealth aircraft and anti-stealth technologies[J]. Journal of Computations & Modelling, 2014, 4 (1): 129- 165. |
9 |
SANTOS W F N . Bluntness impact on lift-to-drag ratio of hypersonic wedge flow[J]. Journal of Spacecraft and Rockets, 2009, 46 (2): 329- 339.
doi: 10.2514/1.41387 |
10 |
O'BRIEN T F , LEWIS M J . Power law shapes for leading-edge blunting with minimal shock standoff[J]. Journal of Spacecraft and Rockets, 1999, 36 (5): 653- 658.
doi: 10.2514/2.3497 |
11 | 唐伟, 冯毅, 杨肖峰, 等. 非惯性弹道飞行器气动布局设计实践[J]. 气体物理, 2017, 2 (1): 1- 12. |
TANG W , FENG Y , YANG X F , et al. Practices of aerodynamic configuration design for non-ballistic trajectory vehicles[J]. Physics of Gases, 2017, 2 (1): 1- 12. | |
12 |
唐伟, 江定武, 桂业伟, 等. 旋成体导弹头部母线线型的选择问题研究[J]. 空气动力学学报, 2010, 28 (2): 218- 221.
doi: 10.3969/j.issn.0258-1825.2010.02.016 |
TANG W , JIANG D W , GUI Y W , et al. Study on generatrix curve types of axis-symmetric missiles[J]. Acta Aerodynamica Sinica, 2010, 28 (2): 218- 221.
doi: 10.3969/j.issn.0258-1825.2010.02.016 |
|
13 |
GUO S Q , LIU W , ZHANG C A , et al. Aerodynamic optimization of hypersonic blunted waveriders based on symbolic regression[J]. Aerospace Science and Technology, 2024, 144, 108801.
doi: 10.1016/j.ast.2023.108801 |
14 | FAN X Y, QIN Y F, SHANG S, et al. Research on the bastatic RCS characteristics of stealth aircraft[C]//Proc. of the Asia-Pacific Microwave Conference, 2015. |
15 |
ZHOU Z Y , HUANG J . Mixed design of radar/infrared stealth for advanced fighter intake and exhaust system[J]. Aerospace Science and Technology, 2021, 110, 106490.
doi: 10.1016/j.ast.2021.106490 |
16 | ALVES M A, PORT RAFAEL J, REZENDE M C. Simulations of the radar cross section of a stealth aircraft[C]//Proc. of the SBMO/IEEE MTTS International Microwave and Optoelectronics Conference, 2007: 409-412. |
17 | CHUNG S S M, TUAN S C. Radar cross section simulation of XQ-58 valkyrie like CAD model[C]//Proc. of the International Workshop on Electromagnetics: Applications and Student Innovation Competition, 2020 |
18 | 姬金祖, 王岩, 黄沛霖, 等. 基于矩量法的机身截面电磁散射特性分析[J]. 航空工程进展, 2013, 4 (1): 37- 42. |
JI J Z , WANG Y , HUANG P L , et al. Study on electromagnetic scattering characteristics of fuselage section based on method of moment[J]. Advances in Aeronautical Science and Engineering, 2013, 4 (1): 37- 42. | |
19 | ZHANG Y , AI J Q , WANG J , et al. Analysis on electromagnetic scattering characteristic of fuselage lateral edge on stealth aircraft[J]. Advances in Aeronautical Science and Engineering, 2017, 8 (1): 17- 22. |
20 | NATH D S C. Effect of trailing edge flap deflection on bi-static radar cross section of a wing[C]//Proc. of the International Conference on Communication, Control and Information Sciences, 2021. |
21 | MOTEVASSELIAN A, JONSSON B L G. Radar cross section reduction of aircraft wing front end[C]//Proc. of the International Conference on Electromagnetics in Advanced Applications, 2009: 237-240. |
22 |
ZHANG H F , LI J , BIAN Z , et al. Electromagnetic scattering characteristics of blunt cone aircraft under THz waves based on PO method[J]. IEEE Trans. on Plasma Science, 2022, 50 (9): 3200- 3209.
doi: 10.1109/TPS.2022.3186729 |
23 | WANG Z Y, GUO L, CHEN W, et al. The influence of non-uniform flow field characteristics of hypersonic vehicle on electromagnetic wave propagation[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2018. |
24 |
BIAN Z , LI J T , GUO L X , et al. Analyzing the electromagnetic scattering characteristics of a hypersonic vehicle based on the inhomogeneity zonal medium model[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (2): 971- 982.
doi: 10.1109/TAP.2020.3008631 |
25 | BIAN Z, LI J T, GUO L X. Doppler spectrum analysis of hypersonic vehicle based on dynamic RCS[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2021. |
26 |
CONG Z , CHEN R S , HE Z . Numerical modeling of EM scattering from plasma sheath: a review[J]. Engineering Analysis with Boundary Elements, 2022, 135, 73- 92.
doi: 10.1016/j.enganabound.2021.11.013 |
27 | PINTO J , WHYMAN N L , RITCHIE M A , et al. Statistical analysis of hypersonic glide vehicle radar cross section[J]. IET Radar, Sonar & Navigation, 2024, 18 (1): 158- 170. |
28 | 周文硕, 夏露, 王培君, 等. 类C-HGB布局锐边化气动隐身优化设计[J]. 航空学报, 2021, 42 (z1): 120- 132. |
ZHOU W S , XIA L , WANG P J , et al. Optimization design of aerodynamic stealth with sharp edges in CHGB layout[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (z1): 120- 132. | |
29 | 刘国富, 王和平, 聂璐, 等. 锐边高超声速再入飞行器气动隐身综合设计[J]. 上海航天, 2016, 33 (2): 100- 105. |
LIU G F , WANG H P , NIE L , et al. Stealthaero dynamic comprehensive design of a sharp-edge hypersonic re-entry vehicle[J]. Aerospace Shanghai, 2016, 33 (2): 100- 105. | |
30 | 刘源, 焦金龙, 王晨, 等. FEKO仿真原理与工程应用[M]. 北京: 机械工业出版社, 2017. |
LIU Y , JIAO J L , WANG C , et al. FEKO simulation principles and engineering applications[M]. Beijing: China Machine Press, 2017. | |
31 | ENGHETA N , MURPHY W D . The fast multipole method (FMM) for electromatic scattering problems[J]. IEEE Trans. on Antennas and Propagation, 1992, 40 (6): 634- 641. |
32 | SONG J , LU C C , CHEW W C . Multilevel fast multipole algorithm for electromatic scattering by large complex objects[J]. IEEE Trans. on Antennas and Propagation, 1997, 45 (10): 1488- 1493. |
33 | 艾俊强, 陈如山, 陈晓盼, 等. 电磁计算方法研究进展综述[J]. 电波科学学报, 2020, 35 (1): 13- 25. |
AI J Q , CHEN R S , CHEN X P , et al. Progress in computational electromagnetic methods[J]. Chinese Journal of Radio Science, 2020, 35 (1): 13- 25. | |
34 | FANG C H, ZHAO X N, LIU Q. An improved physical optics method for the computation of radar cross section of electrically large objects[C]//Proc. of the Asia-Pacific Symposium on Electromagnetic Compatibility and the 19th International Zurich Symposium on Electromagnetic Compatibility, 2008: 722-725. |
35 | BUTT F A, NAQVI I H, JALIL M. Radar cross section analysis for an ogive target[C]//Proc. of the 15th International Radar Symposium, 2014. |
36 | YOUSSEF N N . Radar cross section of complex targets[J]. Proceedings of the IEEE, 1989, 77 (5): 722- 734. |
37 | 肖一凡. 基于物理光学法的离子体鞘套包覆目标散射特性研究[D]. 西安: 西安电子科技大学, 2019. |
XIAO Y F. Research on scarring characteristics of the target coated with plasma sheath by PO method[D]. Xi'an: Xidian University, 2019. |
[1] | 王彩云, 张慧雯, 王佳宁, 吴钇达, 常韵. 基于DTCWT-VAE的弹道中段目标RCS识别[J]. 系统工程与电子技术, 2024, 46(7): 2269-2275. |
[2] | 李英俊, 刘永祥, 田彪, 张文鹏. 基于IRLS的跳频模式下GTD散射参数提取和RCS重构[J]. 系统工程与电子技术, 2023, 45(3): 678-689. |
[3] | 谢拥军, 高杰, 武沛羽, 牛立强. 有源RCS及其应用[J]. 系统工程与电子技术, 2022, 44(8): 2468-2473. |
[4] | 马前阔, 张小宽, 宗彬锋, 徐嘉华, 王阳, 郑舒予. 基于改进混合对数正态分布模型的隐身飞机动态RCS统计特性分析[J]. 系统工程与电子技术, 2022, 44(1): 34-39. |
[5] | 杨利霞, 汪刘丰, 陈伟, 薄勇. 目标电磁散射的面中心立方体网格FDTD方法[J]. 系统工程与电子技术, 2021, 43(10): 2718-2724. |
[6] | 刘天金, 许小剑. RCS测量中目标与金属支架间的耦合散射研究[J]. 系统工程与电子技术, 2021, 43(10): 2756-2765. |
[7] | 李尚生, 王旭坤, 付哲泉, 张军涛. 基于Hankel矩阵改进TLS-ESPRIT算法的散射中心参数提取及RCS重构[J]. 系统工程与电子技术, 2021, 43(1): 62-73. |
[8] | 李江, 冯存前, 王义哲, 贺思三. 基于深度学习的弹道目标智能分类[J]. 系统工程与电子技术, 2020, 42(6): 1226-1234. |
[9] | 郑舒予, 张小宽, 宗彬锋. 基于改进MUSIC算法的散射中心参数提取及RCS重构[J]. 系统工程与电子技术, 2020, 42(1): 76-82. |
[10] | 张浙东, 黎鑫, 张金鹏, 张玉石. 基于姿态修正的目标RCS动态测量方法[J]. 系统工程与电子技术, 2019, 41(6): 1242-1248. |
[11] | 郭杰, 殷红成, 满良. 无源散射单元电磁散射特性可控方法综述[J]. 系统工程与电子技术, 2019, 41(4): 716-723. |
[12] | 党娇娇, 罗沅, 宋祖勋, 胡楚锋, 王保平. 基于耦合目标的近场双站散射测试方法[J]. 系统工程与电子技术, 2019, 41(4): 759-764. |
[13] | 范成礼, 付强, 邢清华. 基于改进PSO的临空高速飞行器协同跟踪优化[J]. 系统工程与电子技术, 2017, 39(3): 476-481. |
[14] | 刘战合, 姬金祖, 王菁, 王晓璐, 黄沛霖. 飞行器表面规律分布的电磁缺陷散射机理[J]. 系统工程与电子技术, 2017, 39(11): 2428-2433. |
[15] | 徐志浩, 李南京, 胡楚锋, 党娇娇. 近场散射测量中的天线方向图修正技术[J]. 系统工程与电子技术, 2017, 39(11): 2399-2404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||