系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (11): 3621-3630.doi: 10.12305/j.issn.1001-506X.2024.11.04
陈望杰1,2, 朱伟强2,*, 樊振宏1, 刘建2
收稿日期:
2023-09-26
出版日期:
2024-10-28
发布日期:
2024-11-30
通讯作者:
朱伟强
作者简介:
陈望杰(1986—), 男, 高级工程师, 博士研究生, 主要研究方向为雷达信号处理Wangjie CHEN1,2, Weiqiang ZHU2,*, Zhenhong FAN1, Jian LIU2
Received:
2023-09-26
Online:
2024-10-28
Published:
2024-11-30
Contact:
Weiqiang ZHU
摘要:
在现代定位系统中,传统的时差测量方法往往受限于信号调制方式、噪声干扰以及硬件实现复杂度等因素,难以保持高精度和实时性。针对上述问题,本文设计一种基于参数特征映射的多站时差定位系统中时差测量方法,由主站检测并产生参考信号,广播至各从站;各站根据此参考信号基于频域互相关算法完成时差测量。该方法有效提高二进制相移键控(binary phase shift keying, BPSK)信号、四相相移键控(quadrature phase shift keying, QPSK)信号、频移-相移复合调制(frequency shift keying-phase shift keying, FSK-PSK)信号等时差测量精度。本文给出了基于现场可编程逻辑门阵列(field programmable gate array, FPGA)时差测量方法的硬件实现,采用实时动态压缩方法,FPGA算法实现资源减少50%;采用抛物线拟合方法,提高时差估计精度;采用基于参数特征映射的数据传输方法,保障多站数据的完备、避免数据缺失和冗余的同时,数据传输量降低95%。仿真与试验测试结果表明,信噪比(signal-to-noise ratio, SNR)大于等于5 dB时, PSK调制信号时差测量精度优于5 ns; 对于前沿缓变调制信号,随着脉冲上升沿宽度增大,时差测量精度无明显变化;最后,在外场试验与飞行试验结果中验证方法的有效性与可行性, 为高精度多站时差定位系统的实际应用提供了有力支持。
中图分类号:
陈望杰, 朱伟强, 樊振宏, 刘建. 基于参数特征映射的多站时差测量实现[J]. 系统工程与电子技术, 2024, 46(11): 3621-3630.
Wangjie CHEN, Weiqiang ZHU, Zhenhong FAN, Jian LIU. Realization of multi-station time difference measurement based on parameter characteristics mapping[J]. Systems Engineering and Electronics, 2024, 46(11): 3621-3630.
表1
FFT输入输出位宽与FPGA资源使用表"
输入位宽 | 截位模式(输出位宽=输入位宽) | 不截位模式(全精度输出) | |||||||
输出位宽 | 乘法器DSP48E1 | 存储器BlockRAMs | 寄存器SliceRegisters | 输出位宽 | 乘法器DSP48E1 | 存储器BlockRAMs | 寄存器SliceRegisters | ||
8 | 8 | 17 | 6 | 1 678 | 21 | 17 | 9 | 1 829 | |
12 | 12 | 17 | 6 | 1 934 | 25 | 28 | 10 | 2 181 | |
16 | 16 | 17 | 6 | 2 242 | 29 | 34 | 14 | 3 543 | |
20 | 20 | 25 | 8 | 2 604 | 33 | 45 | 16 | 3 900 | |
24 | 24 | 25 | 8 | 2 912 | 37 | 61 | 17 | 4 114 | |
28 | 28 | 34 | 10 | 3 634 | 41 | 68 | 19 | 4 474 | |
32 | 32 | 34 | 10 | 4 212 | 45 | 71 | 22 | 5 715 | |
34 | 34 | 34 | 10 | 4 408 | 47 | 74 | 23 | 5 938 |
1 |
WILLIAM D C R , JOSE A A J . An emitter localization method based on multiple differential doppler measurements[J]. IEEE Latin America Transactions, 2022, 20 (4): 537- 544.
doi: 10.1109/TLA.2022.9675458 |
2 |
WU Y J , XU C Q , LING P , et al. Multidimen-sional scaling-based TDOA localization scheme using an auxiliary line[J]. IEEE Signal Processing Letters, 2016, 23 (4): 546- 550.
doi: 10.1109/LSP.2016.2537371 |
3 |
SHI X F , ANDERSON B D O , MAO G , et al. Robust localization using time difference of arrivals[J]. IEEE Signal Processing Letters, 2016, 23 (10): 1320- 1324.
doi: 10.1109/LSP.2016.2569666 |
4 | QIU F Y, DING S F. Research on multi-platform time difference location technology[C]//Proc. of the IEEE 5th International Conference on Signal and Image Processing, 2020: 813-817. |
5 | BOLE M, CHAO T, LI P Z, et al. A TDOA localization method for complex environment localization[C]//Proc. of the Big Data Mining and Information Processing on Journal of Physics Conference Series, 2021, 2004: 012003. |
6 |
WANG Z W , HU D X , ZHAO Y J , et al. Real-time passive localization of TDOA via neural networks[J]. IEEE Communications Letters, 2021, 25, 3320- 3324.
doi: 10.1109/LCOMM.2021.3097065 |
7 |
PETR H , JIRI V , JANA O . The complete analytical solution of the TDOA localization method[J]. Defence Science Journal, 2022, 72 (2): 227- 235.
doi: 10.14429/dsj.72.16933 |
8 |
TALMON A , MICHAEL W , ROEE D . A time difference of arrival based target motion analysis for localization of underwater vehicles[J]. IEEE Trans.on Vehicular Technology, 2022, 71 (1): 326- 338.
doi: 10.1109/TVT.2021.3120201 |
9 | LIANG Z D , YI W J . Application of improved particle swarm optimization algorithm in TDOA[J]. AIP Advances, 2022, 12 (2): 227- 235. |
10 |
LI W C , LI Y , WEI P , et al. A closed-form localization algorithm using angle-of-arrival and difference time of scan time measurements in scan-based radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 55 (1): 511- 515.
doi: 10.1109/TAES.2018.2890353 |
11 | JIANG F , ZHANG Z K . An improved underwater TDOA/AOA joint localisation algorithm[J]. The Institution of Engineering and Technology Communications, 2021, 15, 802- 814. |
12 |
SADJAD I , MOHAMMAD P , MOHAMM-AD J H , et al. Bi-static target localization based on inaccurate TDOA-AOA mea-surements[J]. Signal, Image and Video Processing, 2022, 16 (1): 239- 245.
doi: 10.1007/s11760-021-01985-4 |
13 |
XU D , WEN M , EMANUEL A P H , et al. TDOA-based robust sound source localization with sparse regularization in wireless acoustic sensor networks[J]. IEEE/ACM Trans.on Audio, Speech and Language Processing, 2022, 30, 1108- 1123.
doi: 10.1109/TASLP.2022.3153251 |
14 |
ZOU Y B , LIU H P . Semidefinite programming methods for alleviating clock synchronization bias and sensor position errors in TDOA localization[J]. IEEE Signal Processing Letters, 2020, 27, 241- 245.
doi: 10.1109/LSP.2020.2965822 |
15 |
何胜阳, 杜杰朋, 赵雅琴, 等. 基于TDOA的无人机集群协同单目标定位[J]. 系统工程与电子技术, 2023, 45 (1): 1- 8.
doi: 10.12305/j.issn.1001-506X.2023.01.01 |
HE S Y , DU J P , ZHAO Y Q , et al. TDOA-based cooperative single target location using UAV cluster[J]. Systems Engineering and Electronic, 2023, 45 (1): 1- 8.
doi: 10.12305/j.issn.1001-506X.2023.01.01 |
|
16 | YAO H R, ZOU C M, WANG G X, et al. Station distribution optimization algorithm of TDOA passive location based on adaptive matching reconnaissance area[C]//Proc. of the 2nd International Conference on Electronics, Communications and Information Technology, 2021: 1173-1177. |
17 | 王程民, 平殿发, 宋斌斌, 等. 基于粒子群算法的多机无源定位系统优化布站[J]. 计算机与数字工程, 2021, 49 (3): 487- 492. |
WANG C M , PING D F , SONG B B , et al. Optimization of multi-machine passive positioning system based on PSO[J]. Computer and Digital Engineering, 2021, 49 (3): 487- 492. | |
18 |
WANG Y Z , ZHOU T , YI W , et al. A GDOP-based performance description of TOA localization with uncertain measurements[J]. Remote Sensing, 2022, 14 (4): 910.
doi: 10.3390/rs14040910 |
19 | OYANG X X, CAO J M, ZHAO P Y. TDOA and AOA combined location accuracy analysis with two stations[C]//Proc. of the 2nd International Conference on Control, Automation and Artificial Intelligence, 2017: 429-432. |
20 | GUO Q X, ZHANG L B, TAO X F. Research on singular value point of target azimuth aided passive time-difference-of-arrival[C]//Proc. of the Chinese Institute of Electronics International Conference on Radar, 2016. |
21 |
王洪, 金尔文, 刘昌忠, 等. 多点定位TOA精确估计及同步误差校正算法[J]. 系统工程与电子技术, 2013, 35 (4): 835- 839.
doi: 10.3969/j.issn.1001-506X.2013.04.26 |
WANG H , JIN E W , LIU C Z , et al. Accurate estimation of TOA and calibration of synchronization error for multilateration[J]. Systems Engineering and Electronics, 2013, 35 (4): 835- 839.
doi: 10.3969/j.issn.1001-506X.2013.04.26 |
|
22 |
WANG D X , GUO R , XING N , et al. Performance analysis of two RDSS positioning modes of BeiDou-3 system[J]. Astrodynamics, 2022, 6 (3): 317- 327.
doi: 10.1007/s42064-022-0140-6 |
23 | XU R , ZHAO J F , TIAN X , et al. Scheme of BeiDou high-precision time synchronization technology[J]. Journal of Navigation and Positioning, 2023, 11 (1): 154- 158. |
24 | ZHANG J H , DONG S W , YUAN H B , et al. Study on PPP time comparison based on BeiDou-3 new signal[J]. IEEE Instrumentation & Measurement Magazine, 2022, 8, 30- 40. |
25 |
杨健, 刘渝, 狄慧. 基于时差校正的长基线宽带测向算法[J]. 系统工程与电子技术, 2013, 35 (1): 20- 28.
doi: 10.3969/j.issn.1001-506X.2013.01.04 |
YANG J , LIU Y , DI H . Long baseline direction finding algorithm of wideband based on time-delay correction[J]. Systems Engineering and Electronics, 2013, 35 (1): 20- 28.
doi: 10.3969/j.issn.1001-506X.2013.01.04 |
|
26 | SUN H M , JIA R S , DU Q Q , et al. Cross-correlation analysis and time delay estimation of a homologous micro-seismic signal based on the Hilbert-Huang transform[J]. Computers & Geosciences, 2016, 91, 98- 104. |
27 | ROBERT H . Time delay estimation of random signals using cross-correlation with Hilbert transform[J]. Measurement, 2019, 146, 792- 799. |
28 | LUO Z H , ZHOU F J , LEI L , et al. A Kalman filter and optimal Fourier fransform rank combined cross correlation algorithm for time-difference extraction[J]. Science and Technology, 2021, 21 (12): 4982- 4989. |
29 | 郑恩明, 陈新华, 孙长瑜. 一种水下声信号未知频率的时延差估计方法[J]. 振动与冲, 2014, 33 (9): 190- 194. |
ZHENG E M , CHEN X H , SUN C Y . A time delay difference estimation method for unknown frequency of underwater acoustic signals[J]. Journal of Vibration and Shock, 2014, 33 (9): 190- 194. | |
30 | MA X X , TARING B , CHEN H , et al. A maximum-likelihood TDOA localization algorithm using difference-of-convex programming[J]. IEEE Signal Processing Letters, 2021, 28, 309- 313. |
31 | ZHANG L , WU X L . On the application of cross correlation function to subsample discrete time delay estimation[J]. Digital Signal Processing, 2006, 16, 682- 694. |
32 | 孙兵, 李龙骧, 罗景青. 协同侦察系统增加猝发探测功能的定位技术[J]. 航天电子对抗, 2016, 32 (3): 9- 12. |
SUN B , LI L X , LUO J Q . Location technology of synergy reconnaissance system adding instantaneous detection function[J]. Aerospace Electronic Warfare, 2016, 32 (3): 9- 12. | |
33 | HOU M J , WU H L , PENG J G , et al. Long-range and high-precision localization method for underwater bionic positioning system based on joint active-passive electrolocation[J]. Scientific Reports, 2023, 13 (1): 21475. |
34 | ZHANG J L. A FPGA-based parallel method of bridge data compression[C]//Proc. of the International Conference on Power Electronics and Power Transmission, 2021. |
35 | MAHESH R , VINOD A P , EDMUND M K L , et al. Filter bank channelizers for multi-standard software defined radio receivers[J]. Journal of Signal Processing Systems, 2021, 62, 157- 171. |
36 | DUAN X Z , SU S , MEI N . Transmitting electric power system dynamics in SCADA using polynomial fitting[J]. Science in China Series E: Technological Sciences, 2009, 52 (4): 937- 943. |
37 |
李晓辉, 万宏杰, 樊韬, 等. 基于多相滤波的高精度延时设计及实现[J]. 系统工程与电子技术, 2023, 45 (1): 25- 31.
doi: 10.12305/j.issn.1001-506X.2023.01.04 |
LI X H , WAN H J , FAN T , et al. Design and implementation of high precision delay based on polyphase filtering[J]. Systems Engineering and Electronics, 2023, 45 (1): 25- 31.
doi: 10.12305/j.issn.1001-506X.2023.01.04 |
|
38 | SMITH J P , BAILEY J I , TUTHILL J , et al. A high-throughput oversampled polyphase filter bank using vivadio HLS and PYNQ on a RFSoc[J]. IEEE Open Journal of Circuits and Systems, 2021, 2, 241- 252. |
39 | XIE Y L , JIANG P , GU Y , et al. Dual-source detection and identification system based on UAV radio frequency signal[J]. IEEE Trans.on Instrumentation and Measurement, 2021, 70, 9509437. |
40 | CHACKO J D , HENG C H , LIAN Y . A hybrid data compression scheme for power reduction in wireless sensors for IoT[J]. IEEE Trans.on Biomedical Circuits and Systems, 2017, 11 (2): 245- 254. |
41 | SIYA M , YOU W A , YU Z . A content-independent method for LFM signal source identification[J]. AEU-International Journal of Electronics and Communications, 2022, 143 (1): 154024. |
42 | LIU X L , XIAO B , WANG C Y . Optimal target function for the fractional Fourier transform of LFM signals[J]. Circuits, Systems, and Signal Processing, 2022, 41, 4160- 4173. |
[1] | 金国栋, 薛远亮, 谭力宁, 许剑锟. 基于孪生神经网络的目标跟踪算法进展研究[J]. 系统工程与电子技术, 2022, 44(6): 1805-1822. |
[2] | 张聿远, 张立民, 闫文君. 基于互相关特征图和扩张稠密卷积网络的SFBC-OFDM识别方法[J]. 系统工程与电子技术, 2021, 43(9): 2657-2664. |
[3] | 闫文君, 张聿远, 凌青, 于柯远, 谭凯文, 刘恒燕. 基于频域互相关序列与峰值检测的空频分组码盲识别算法[J]. 系统工程与电子技术, 2021, 43(12): 3709-3715. |
[4] | 郝志梅, 孙进平, 罗美方. 基于复合频率编码的低截获概率波形簇设计[J]. 系统工程与电子技术, 2021, 43(11): 3137-3143. |
[5] | 凌青, 闫文君, 张立民, 于柯远. AL-OFDM和SM-OFDM空频分组码信号盲识别方法[J]. 系统工程与电子技术, 2021, 43(1): 19-25. |
[6] | 王琛, 王芳, 李明齐. 无线自组织通信中基于前导符号的定时同步[J]. 系统工程与电子技术, 2020, 42(6): 1372-1378. |
[7] | 刘洋, 李静霞, 郭甜, 王冰洁, 徐航, 刘丽. 格雷互补码雷达实现地下管线的高信杂比探测[J]. 系统工程与电子技术, 2020, 42(5): 1050-1056. |
[8] | 董爱, 夏芒, 李陟, 卓志敏. 空中分布式协同时差测量系统目标定位技术研究[J]. 系统工程与电子技术, 2020, 42(4): 799-805. |
[9] | 李文刚, 王屹伟, 陈睿, 刘猛. BOC调制信号抗多径双环估计方法[J]. 系统工程与电子技术, 2018, 40(5): 1118-1123. |
[10] | 张民, 李宗浩, 高明. 基于Lorenz混沌的MIMO雷达信号设计及性能分析[J]. 系统工程与电子技术, 2018, 40(1): 58-64. |
[11] | 赵强, 侯孝民, 焦义文. 宽带干涉测量通道群时延非线性误差标校[J]. 系统工程与电子技术, 2017, 39(6): 1221-1226. |
[12] | 许成谦, 马雅楠. 二维时频低碰撞区跳频序列集的构造[J]. 系统工程与电子技术, 2017, 39(4): 905-909. |
[13] | 薛海伟, 冯大政. #br# 解析搜索偏移量的InSAR图像精配准方法[J]. 系统工程与电子技术, 2016, 38(8): 1787-1793. |
[14] | 张天骐, 周杨, 叶飞. TDDM-BOC信号副载波类型识别及参数盲估计[J]. 系统工程与电子技术, 2016, 38(4): 922-928. |
[15] | 邱钊洋, 黄焱, 欧阳喜. 基于星座图统计的盲载波同步算法[J]. 系统工程与电子技术, 2016, 38(12): 2855-2862. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||