系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (11): 3613-3620.doi: 10.12305/j.issn.1001-506X.2024.11.03
朱东升, 宿晓静, 马治勋, 师英杰
收稿日期:
2023-09-27
出版日期:
2024-10-28
发布日期:
2024-11-30
通讯作者:
朱东升
作者简介:
朱东升(1989—), 男, 助理研究员, 硕士, 主要研究方向为目标检测、水声信号处理Dongsheng ZHU, Xiaojing SU, Zhixun MA, Yingjie SHI
Received:
2023-09-27
Online:
2024-10-28
Published:
2024-11-30
Contact:
Dongsheng ZHU
摘要:
为提高恒虚警检测器在不同检测背景下的鲁棒性和抗干扰能力, 提出一种综合型的自适应检测器, 其具备多策略选择能力和检测参数动态调节能力。所提检测器引入贝叶斯信息准则, 通过计算参考单元的信息估计序列, 对当前检测背景类型进行识别。进一步, 在非均匀检测背景下, 该检测器能够对干扰目标个数或杂波边缘位置进行估计。最终根据识别和估计结果选择对应的检测策略和检测参数。利用蒙特卡罗仿真, 对所提检测器性能进行分析, 并与经典检测器进行比较。仿真结果表明, 该检测器具备检测背景识别能力和背景参数估计能力。同时, 该检测器在检测背景参数先验知识不足的情况下, 具有较好的抗干扰能力。
中图分类号:
朱东升, 宿晓静, 马治勋, 师英杰. 非均匀杂波背景下的自适应检测器设计[J]. 系统工程与电子技术, 2024, 46(11): 3613-3620.
Dongsheng ZHU, Xiaojing SU, Zhixun MA, Yingjie SHI. Design of adaptive detector for inhomogeneous clutter background[J]. Systems Engineering and Electronics, 2024, 46(11): 3613-3620.
1 | 何友. 雷达目标检测与恒虚警处理[M]. 关键, 孟祥伟. 2版. 北京: 清华大学出版社, 2011. |
HE Y. Radar target detection and CFAR processing[M]. GUAN J, MENG X W. 2nd ed. Beijing: Tsinghua University Press, 2011. | |
2 | 郭辰锋. 复杂背景目标检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
GUO C F. Reasearch on target detection technology with complex backgroud[D]. Harbin: Harbin Institute of Technology, 2020. | |
3 |
XU Y W , HOU C H , YAN S F , et al. Fuzzy statistical norma-lization CFAR detector for non-rayleigh data[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (1): 383- 396.
doi: 10.1109/TAES.2014.130683 |
4 |
CAROTENUTO V , DEMAIO A . A clustering approach for jamming environment classification[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (3): 1903- 1918.
doi: 10.1109/TAES.2021.3050655 |
5 |
DEMAIO A . Invariance theory for adaptive radar detection in heterogeneous environment[J]. IEEE Signal Processing Letters, 2019, 26 (7): 996- 1000.
doi: 10.1109/LSP.2019.2916749 |
6 | LI L T, SHI J Y, LI Y Y, et al. An IOSGO-CFAR algorithm based on clutter classification and recognition[C]//Proc. of the IEEE 15th International Conference on Solid-State and Integrated Circuit Technology, 2020. |
7 |
BAADECHE M , SOLTANI F . Performance analysis of mean level constant false alarm rate detectors with binary integration in Weibull background[J]. IET Radar Sonar and Navigation, 2015, 9 (3): 233- 240.
doi: 10.1049/iet-rsn.2014.0053 |
8 |
COLUCCIA A , FASCISTA A , RICCI G . A k-nearest neighbors approach to the design of radar detectors[J]. Signal Processing, 2020, 174, 107609.
doi: 10.1016/j.sigpro.2020.107609 |
9 |
SMITH M E , VARSHNEY P K . Intelligent CFAR processor based on data variability[J]. IEEE Trans.on Aerospace and Electronic Systems, 2000, 36 (3): 837- 847.
doi: 10.1109/7.869503 |
10 |
CAO T T . Constant false-alarm rate algorithm based on test cell information[J]. IET Radar Sonar and Navigation, 2008, 2 (3): 200- 213.
doi: 10.1049/iet-rsn:20070133 |
11 |
ADDABBO P , HAN S D , ORLANDO D , et al. Learning strategies for radar clutter classification[J]. IEEE Trans.on Signal Processing, 2021, 69, 1070- 1082.
doi: 10.1109/TSP.2021.3050985 |
12 |
LIU J , BIONDI F , ORLANDO D , et al. Training data classification algorithms for radar applications[J]. IEEE Signal Processing Letters, 2019, 26 (10): 1446- 1450.
doi: 10.1109/LSP.2019.2935625 |
13 |
TAO D , ANFINSEN S N , BREKKE C . Robust CFAR detector based on truncated statistics in multiple-target situations[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (1): 117- 134.
doi: 10.1109/TGRS.2015.2451311 |
14 | METCALF J, BLUNT S D, HIMED B. A machine learning approach to cognitive radar detection[C]//Proc. of the IEEE Radar Conference, 2015: 1405-1411. |
15 | 曲超, 郝程鹏, 杨树元. 基于自动删除算法的恒虚警检测器[J]. 数据采集与处理, 2008, 23 (5): 14- 18. |
QU C , HAO C P , YANG S Y . CFAR detector based on automatic censoring algorithm[J]. Journal of Data Acquisition and Processing, 2008, 23 (5): 14- 18. | |
16 | 张永光, 荣锋. 一种改进的自适应恒虚警检测器[J]. 电子测量技术, 2022, 45 (11): 83- 89. |
ZHANG Y G , RONG F . An improved adaptive CFAR detector[J]. Electronic Measurement Technology, 2022, 45 (11): 83- 89. | |
17 |
MAGAZ B , BELOUCHRANI A , HAMADOUCHE M H . Automatic threshold selection in OS-CFAR radar detection using information theoretic criteria[J]. Progress in Electromagnetics Research B, 2011, 30, 157- 175.
doi: 10.2528/PIERB10122502 |
18 | ZHU D S, SU X J, MA Z X, et al. Intelligent CFAR detector against interference of multiple targets[C]//Proc. of the 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies, 2022: 72-76. |
19 |
WANG L O , WAND D H , HAO C P . Intelligent CFAR detector based on support vector machine[J]. IEEE Access, 2017, 5, 26965- 26972.
doi: 10.1109/ACCESS.2017.2774262 |
20 |
刘恒燕, 宋杰, 熊伟, 等. 大入射余角CFAR检测器[J]. 系统工程与电子技术, 2019, 41 (6): 1218- 1223.
doi: 10.3969/j.issn.1001-506X.2019.06.07 |
LIU H Y , SONG J , XIONG W , et al. Large-grazing-angle CFAR detector[J]. Systems Engineering and Electronics, 2019, 41 (6): 1218- 1223.
doi: 10.3969/j.issn.1001-506X.2019.06.07 |
|
21 | 芮义斌, 魏知寒, KHOASANGN, 等. 一种非均匀背景下的多策略CFAR检测器[J]. 南京理工大学学报, 2016, 40 (2): 199- 203. |
RUI Y B , WEI Z H , KHOASANG N , et al. Multiple strategy CFAR detector in nonhomogeneous environment[J]. Journal of Nanjing University of Science and Technology, 2016, 40 (2): 199- 203. | |
22 | QI Q, HU W. One efficient target detection based on neural network under homogeneous and non-homogeneous background[C]//Proc. of the IEEE 17th International Conference on Communication Technology, 2017: 1503-1507. |
23 | YIN C R, YAN L J, HAO C P, et al. Novel classification schemes for radar scenarios: design and comparison[C]//Proc. of the 30th European Signal Processing Conference, 2022: 1861-1865. |
24 |
HAN S D , YAN L J , ZHANG Y X , et al. Adaptive radar detection and classification algorithms for multiple coherent signals[J]. IEEE Trans.on Signal Processing, 2021, 69, 560- 572.
doi: 10.1109/TSP.2020.3047523 |
25 |
STOICA P , SELEN Y . Model-order selection: a review of information criterion rules[J]. IEEE Signal Processing Magazine, 2004, 21 (4): 36- 47.
doi: 10.1109/MSP.2004.1311138 |
26 |
MARIANI A , GIORGETTI A , CHIANI M . Model order selection based on information theoretic criteria: design of the penalty[J]. IEEE Trans.on Signal Processing, 2015, 63 (11): 2779- 2789.
doi: 10.1109/TSP.2015.2414900 |
27 |
CAROTENUTO V , DEMAIO A , ORLANDO D , et al. Model order selection rules for covariance structure classification in radar[J]. IEEE Trans.on Signal Processing, 2017, 65 (20): 5305- 5317.
doi: 10.1109/TSP.2017.2728523 |
28 | DRIDI N , HADZAGIC M . Akaike and bayesian information criteria for hidden markov models[J]. IEEE Signal Processing Letters, 2018, 26 (2): 302- 306. |
29 | 魏嘉, 徐达, 闫晟, 等. OSSO和OSGO恒虚警检测器在Pareto分布混响背景下的性能分析[J]. 信号处理, 2019, 35 (9): 8. |
WEI J , XU D , YAN S , et al. Performance analysis of OSSO-and OSGO-CFAR in Pareto distribution reverberation[J]. Journal of Signal Processing, 2019, 35 (9): 8. | |
30 | 朱东升, 宿晓静, 刘晋伟, 等. 均匀混响背景下抗多目标干扰自适应检测器设计[J]. 水下无人系统学报, 2022, 30 (4): 422- 428. |
ZHU D S , SU X J , LIU J W , et al. Design of a multi-target interference resistant adaptive detector under Homogeneous reverberation backgrounds[J]. Journal of Unmanned Undersea Systems, 2022, 30 (4): 422- 428. |
[1] | 单靖原, 卢雨, 凌寒羽. 鲁棒自适应的机载外辐射源雷达多目标跟踪算法[J]. 系统工程与电子技术, 2024, 46(9): 2902-2915. |
[2] | 江林海, 龚柏春, 刘传凯, YANG Yang, 张仁勇. 天基分布式无源探测的空间多目标跟踪方法[J]. 系统工程与电子技术, 2024, 46(8): 2789-2797. |
[3] | 洪涛, 王凡, 李治, 钟志伟, 丁晓进, 刘子威, 张更新. 业务驱动的低轨卫星物联网终端模态切换方法[J]. 系统工程与电子技术, 2024, 46(8): 2867-2876. |
[4] | 姚思亦, 李万春, 高林, 张花国, 胡航玮. 基于分布式PMHT的多传感器多目标跟踪[J]. 系统工程与电子技术, 2024, 46(7): 2184-2190. |
[5] | 许强强, 柴华. 基于NSGA-Ⅱ的车载光学测量设备任务调度方案优化[J]. 系统工程与电子技术, 2024, 46(7): 2393-2400. |
[6] | 吴浩南, 狄凌松, 司守奎, 万兵, 苏析超. 远程联合打击下防空火力单元机动路线预测研究[J]. 系统工程与电子技术, 2024, 46(7): 2413-2423. |
[7] | 李大卫, 吴明辉, 单志超, 宋广明, 蔡召鹏. 基于线谱特征保持的单枚浮标多目标信号分离算法[J]. 系统工程与电子技术, 2024, 46(6): 1892-1898. |
[8] | 卓娅玲, 李响, 左磊, 胡娟. 随机数据丢包情况下组网雷达功率分配算法[J]. 系统工程与电子技术, 2024, 46(6): 1957-1966. |
[9] | 齐美彬, 庄硕, 胡晶晶, 杨艳芳, 胡元奎. 基于联合GLMB滤波器的可分辨群目标跟踪[J]. 系统工程与电子技术, 2024, 46(4): 1212-1219. |
[10] | 刘哲, 马俊飞, 陈佳峰, 马嵩华. 基于改进灰狼算法的舰载机弹药保障调度优化[J]. 系统工程与电子技术, 2024, 46(4): 1264-1272. |
[11] | 曾舒雅, 饶彬. 基于动力学守恒定律的弹道目标关联方法[J]. 系统工程与电子技术, 2024, 46(2): 684-691. |
[12] | 陈浩, 孙刚, 彭双, 伍江江. 基于多目标优化的测控数传资源动态重调度方法[J]. 系统工程与电子技术, 2024, 46(11): 3744-3753. |
[13] | 秦湖程, 黄炎焱, 陈天德, 张寒. 基于PPO算法的集群多目标火力规划方法[J]. 系统工程与电子技术, 2024, 46(11): 3764-3773. |
[14] | 叶炎峰, 明梦君, 雷洪涛. 基于NSGA-Ⅱ算法的局域野战微电网优化配置[J]. 系统工程与电子技术, 2024, 46(11): 3800-3806. |
[15] | 刘俊, 崔宁, 谢佳昕, 行坤. 基于NSGA-Ⅲ的机载雷达空空射频隐身探测参数设计[J]. 系统工程与电子技术, 2024, 46(1): 97-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||