系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (11): 3595-3604.doi: 10.12305/j.issn.1001-506X.2024.11.01

• 电子技术 • 上一篇    下一篇

平台式导引头隔离度模型在线辨识方法

肖博文1, 马泽远2, 鲁天宇3, 夏群利1,*   

  1. 1. 北京理工大学宇航学院, 北京 100081
    2. 上海机电工程研究所, 上海 201109
    3. 北京航天自动控制研究所, 北京 100070
  • 收稿日期:2023-09-13 出版日期:2024-10-28 发布日期:2024-11-30
  • 通讯作者: 夏群利
  • 作者简介:肖博文(1994—), 男, 博士研究生, 主要研究方向为飞行器总体设计、捷联导引头探测与跟踪
    马泽远(1995—), 男, 工程师, 硕士, 主要研究方向为飞行器总体设计、飞行器制导与控制
    鲁天宇(1987—), 男, 高级工程师, 博士, 主要研究方向为飞行器总体设计、飞行器制导与控制
    夏群利(1971—), 男, 副教授, 博士, 主要研究方向为飞行器总体设计、飞行器制导与控制

On-line identification method for models of platform seeker disturbance rejection rate

Bowen XIAO1, Zeyuan MA2, Tianyu LU3, Qunli XIA1,*   

  1. 1. School of Astronautics, Beijing Institute of Technology, Beijing 100081, China
    2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
    3. Beijing Aerospace Automatic Control Research Institute, Beijing 100070, China
  • Received:2023-09-13 Online:2024-10-28 Published:2024-11-30
  • Contact: Qunli XIA

摘要:

针对平台导引头隔离度模型在线辨识问题, 提出一种改进卷积神经网络的导引头隔离度模型辨识方法, 实现对不同干扰力矩以及天线罩误差等干扰参数影响下产生的隔离度模型高效辨识。首先, 建立平台导引头模型, 推导出隔离度传递函数, 并搭建基于隔离度寄生回路的制导回路平台, 获取弹体扰动下的视线角速率信息作为训练和测试数据。然后, 利用卷积神经网络对视线角速率信号进行特征提取和特征降维。最后, 经分类输出模型诊断结果。仿真结果表明,所提辨识方法对隔离度模型识别正确率能够达到99.7%,相较于传统方法提高了模型辨识准确率和快速在线辨识能力,具有较好的工程应用前景。

关键词: 平台导引头, 隔离度, 卷积神经网络, 模型辨识

Abstract:

To solve the problem of online identification of platform seeker disturbance rejection rate models, an improved convolutional neural network based seeker disturbance rejection rate model identification method is proposed to realize efficient identification of the model generated by different torques and radome errors. Firstly, the seeker model of the platform is established, the disturbance rejection rate transfer function is derived, the guidance loop platform based on the parasitic loop is built, and the line of sight angle rate information under the disturbance of the missile body is obtained as the training and test data. Then, convolutional neural network is used to extract and reduce the feature dimension of the line of sight angle rate signal. Finally, the model diagnosis results are output by classification. The simulation results show that the proposed identification method of disturbance rejection rate model recognition accuracy can reach 99.7%, which improves the identification accuracy and fast online identification ability compared with traditional methods, and has a good engineering application prospect.

Key words: platform seeker, disturbance rejection rate (DRR), convolution neural network (CNN), model identification

中图分类号: