1 |
贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41 (S1): 4- 14.
|
|
JIA Y N , TIAN S Y , LI Q . Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronauticaet Astronautica Sinica, 2020, 41 (S1): 4- 14.
|
2 |
AL-HILO A , SAMIR M , ASSI C , et al. UAV-assisted content delivery in intelligent transportation systems-joint trajectory planning and cache management[J]. IEEE Trans.on Intelligent Transportation Systems, 2020, 22 (8): 5155- 5167.
|
3 |
ERDELJ M , NATALIZIO E , CHOWDHURY K R , et al. Help from the sky: leveraging UAVs for disaster management[J]. IEEE Pervasive Computing, 2017, 16 (1): 24- 32.
doi: 10.1109/MPRV.2017.11
|
4 |
宗群, 王丹丹, 邵士凯, 等. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 2017, 49 (3): 1- 14.
|
|
ZONG Q , WANG D D , SHAO S K , et al. Research status and development of multi UAV coordinated formation flight control[J]. Journal of Harbin Institute of Technology, 2017, 49 (3): 1- 14.
|
5 |
SHAO X L , LIU H C , ZHANG W D , et al. Path driven formation-containment control of multiple UAVs: a path-following framework[J]. Aerospace Science and Technology, 2023, 135, 108168.
doi: 10.1016/j.ast.2023.108168
|
6 |
CHEN L , DUAN H B . Collision-free formation-containment control for a group of UAVs with unknown disturbances[J]. Aerospace Science and Technology, 2022, 126, 107618.
doi: 10.1016/j.ast.2022.107618
|
7 |
SHAO S K , PENG Y , HE C L , et al. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization[J]. ISA Transactions, 2020, 97, 415- 430.
doi: 10.1016/j.isatra.2019.08.018
|
8 |
WU Y , GOU J Z , HU X T , et al. A new consensus theory-based method for formation control and obstacle avoidance of UAVs[J]. Aerospace Science and Technology, 2020, 107, 106332.
doi: 10.1016/j.ast.2020.106332
|
9 |
QU C Z , GAI W D , ZHONG M Y , et al. A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning[J]. Applied Soft Computing, 2020, 89, 106099.
doi: 10.1016/j.asoc.2020.106099
|
10 |
ZHANG Z , WU J , DAI J Y , et al. A novel real-time penetration path planning algorithm for stealth UAV in 3D complex dynamic environment[J]. IEEE Access, 2020, 8, 122757- 122771.
doi: 10.1109/ACCESS.2020.3007496
|
11 |
吴文海, 郭晓峰, 周思羽. 基于改进约束差分进化算法的动态航迹规划[J]. 控制与决策, 2020, 35 (10): 2381- 2390.
|
|
WU W H , GUO X F , ZHOU S Y . Dynamic route planning based on improved constrained differential evolution algorithm[J]. Control and Decision, 2020, 35 (10): 2381- 2390.
|
12 |
YU X B , JIANG N J , WANG X M , et al. A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning[J]. Expert Systems with Applications, 2023, 215, 119327.
doi: 10.1016/j.eswa.2022.119327
|
13 |
XU L , CAO X B , DU W B , et al. Cooperative path planning optimization for multiple UAVs with communication constraints[J]. Knowledge-Based Systems, 2023, 260, 110164.
doi: 10.1016/j.knosys.2022.110164
|
14 |
SILVA J A G , SANTOS D H , NEGREIROS A P F , et al. High-level path planning for an autonomous sailboat robot using Q-Learning[J]. Sensors, 2020, 20 (6): 1550.
doi: 10.3390/s20061550
|
15 |
孙辉辉, 胡春鹤, 张军国. 移动机器人运动规划中的深度强化学习方法[J]. 控制与决策, 2021, 36 (6): 1281- 1292.
|
|
SUN H H , HU C H , ZHANG J G . Deep reinforcement learning for motion planning of mobile robots[J]. Control and Decision, 2021, 36 (6): 1281- 1292.
|
16 |
LI X J , LIU H , LI J Q , et al. Deep deterministic policy gradient algorithm for crowd-evacuation path planning[J]. Computers & Industrial Engineering, 2021, 161, 107621.
|
17 |
ZHANG S T , LI Y B , DONG Q . Autonomous navigation of UAV in multi-obstacle environments based on a deep reinforcement learning approach[J]. Applied Soft Computing, 2022, 115, 108194.
doi: 10.1016/j.asoc.2021.108194
|
18 |
POLYDOROS A S , NALPANTIDIS L . Survey of model-based reinforcement learning: applications on robotics[J]. Journal of Intelligent & Robotic Systems, 2017, 86 (2): 153- 173.
|
19 |
ZHANG F J , LI J , LI Z . A TD3-based multi-agent deep reinforcement learning method in mixed cooperation-competition environment[J]. Neurocomputing, 2020, 411, 206- 215.
doi: 10.1016/j.neucom.2020.05.097
|
20 |
SUI D , XU W P , ZHANG K . Study on the resolution of multi-aircraft flight conflicts based on an IDQN[J]. Chinese Journal of Aeronautics, 2022, 35 (2): 195- 213.
|
21 |
周治国, 余思雨, 于家宝, 等. 面向无人艇的T-DQN智能避障算法研究[J]. 自动化学报, 2023, 49 (8): 1645- 1655.
|
|
ZHOU Z G , YU S Y , YU J B , et al. Research on T-DQN intelligent obstacle avoidance algorithm of unmanned surface vehicle[J]. Acta Automatica Sinica, 2023, 49 (8): 1645- 1655.
|
22 |
YAN C , XIANG X J , WANG C . Towards real-time path planning through deep reinforcement learning for a UAV in dynamic environments[J]. Journal of Intelligent & Robotic Systems, 2020, 98, 297- 309.
|
23 |
杨秀霞, 王晨蕾, 张毅, 等. 基于逆向强化学习的无人机路径规划[J]. 电光与控制, 2023, 30 (8): 1- 7.
|
|
YANG X X , WANG C L , ZHANG Y , et al. UAV path planning based on reverse reinforcement learning[J]. Electronics Optics & Control, 2023, 30 (8): 1- 7.
|
24 |
QIE H , SHI D X , SHEN T L , et al. Joint optimization of multi-UAV target assignment and path planning based on multi-agent reinforcement learning[J]. IEEE Access, 2019, 7, 146264- 146272.
|
25 |
ZHOU C H , LI J X , SHI Y J , et al. Research on multi-robot formation control based on MATD3 algorithm[J]. Applied Sciences, 2023, 13 (3): 1874.
|
26 |
WU Y , GOU J Z , JI H L , et al. Hierarchical mission replanning for multiple UAV formations performing tasks in dynamic situation[J]. Computer Communications, 2023, 200, 132- 148.
|
27 |
PAN Z H , ZHANG C X , XIA Y Q , et al. An improved artificial potential field method for path planning and formation control of the multi-UAV systems[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2022, 69 (3): 1129- 1133.
|
28 |
TAHIR A , BOLING J M , HAGHBAYAN M H , et al. Comparison of linear and nonlinear methods for distributed control of a hierarchical formation of UAVs[J]. IEEE Access, 2020, 8, 95667- 95680.
|
29 |
王锦锦, 祁圣君, 钟海, 等. 基于Dubins曲线的一致性编队集结控制[J]. 计算机仿真, 2021, 38 (7): 40- 44.
|
|
WANG J J , QI S J , ZHONG H , et al. Consistent formation aggregation control based on dubins curve[J]. Computer Simulation, 2021, 38 (7): 40- 44.
|
30 |
TANG J . Analysis and improvement of traffic alert and collision avoidance system[J]. IEEE Access, 2017, 5, 21419- 21429.
|
31 |
LIU H , PENG F C , MODARES H , et al. Heterogeneous formation control of multiple rotorcrafts with unknown dynamics by reinforcement learning[J]. Information Sciences, 2021, 558, 194- 207.
|
32 |
PAN C , PENG Z H , LIU L , et al. Data-driven distributed formation control of under-actuated unmanned surface vehicles with collision avoidance via model-based deep reinforcement learning[J]. Ocean Engineering, 2023, 267, 113166.
|
33 |
ZHANG Y , MOU Z Y , GAO F F , et al. UAV-enabled secure communications by multi-agent deep reinforcement learning[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (10): 11599- 11611.
|
34 |
孙田野, 孙伟, 吴建军. 改进Quatre算法的无人机编队快速集结方法[J]. 系统工程与电子技术, 2022, 44 (9): 2840- 2848.
doi: 10.12305/j.issn.1001-506X.2022.09.18
|
|
SUN T Y , SUN W , WU J J . UAV formation rapid assembly method based on improved Quatre algorithm[J]. Systems Engineering and Electronics, 2022, 44 (9): 2840- 2848.
doi: 10.12305/j.issn.1001-506X.2022.09.18
|