1 |
LI R, MA H Z. Research on UAV swarm cooperative reconnaissance and combat technology[C]//Proc. of the IEEE 3rd International Conference on Unmanned Systems, 2020: 996-999.
|
2 |
齐小刚, 周雨桐, 刘立芳. 无人机集群对地作战任务可靠性评估[J]. 系统工程与电子技术, 2023, 45 (9): 2971- 2978.
doi: 10.12305/j.issn.1001-506X.2023.09.38
|
|
Ql X G , ZHOU Y T , LIU L F . Evaluation of the reliability of UAV swarm for ground combat missions[J]. Systems Engineering and Electronics, 2023, 45 (9): 2971- 2978.
doi: 10.12305/j.issn.1001-506X.2023.09.38
|
3 |
陆晓安, 浦黄忠, 甄子洋, 等. 基于改进一致性算法的无人机集群饱和攻击[J]. 电光与控制, 2021, 28 (8): 31- 35.
doi: 10.3969/j.issn.1671-637X.2021.08.007
|
|
LU X A , PU H Z , ZHEN Z Y , et al. Saturation attack of UAV swarm based on improved consensus algorithm[J]. Electronics Optics & Control, 2021, 28 (8): 31- 35.
doi: 10.3969/j.issn.1671-637X.2021.08.007
|
4 |
冯政, 吴傲, 王谦喆. 无人机集群打击海面目标指定时间协同控制方法[J]. 电光与控制, 2022, 29 (9): 43- 47.
doi: 10.3969/j.issn.1671-637X.2022.09.009
|
|
FENG Z , WU A , WANG Q Z . Cooperative control method of designated time for UAV swarm attacking sea target[J]. Electronics Optics & Control, 2022, 29 (9): 43- 47.
doi: 10.3969/j.issn.1671-637X.2022.09.009
|
5 |
张毅, 于浩, 杨秀霞, 等. 无人机集群分组编队控制跟踪一体化设计[J]. 系统工程与电子技术, 2023, 45 (3): 848- 858.
doi: 10.12305/j.issn.1001-506X.2023.03.27
|
|
ZHANG Y , YU H , YANG X X , et al. Integrated design of group formation control and tracking of UAV swarm[J]. Systems Engineering and Electronics, 2023, 45 (3): 848- 858.
doi: 10.12305/j.issn.1001-506X.2023.03.27
|
6 |
REYNOLDS C W . Flocks, herds, and schools: a distributed behavioral model[J]. Computer Graphics, 1987, 21 (4): 25- 34.
doi: 10.1145/37402.37406
|
7 |
VICSEK T , CZIROK A , BEN-JACOB E , et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75 (6): 1226- 1229.
doi: 10.1103/PhysRevLett.75.1226
|
8 |
CUCKER F , SMALE S . Emergent behavior in flocks[J]. IEEE Trans. on Automatic Control, 2007, 52 (5): 852- 862.
doi: 10.1109/TAC.2007.895842
|
9 |
OLFATI-SABER R . Flocking for multi-agent dynamic systems: algorithms and theory[J]. IEEE Trans.on Automatic Control, 2006, 51 (3): 401- 420.
doi: 10.1109/TAC.2005.864190
|
10 |
GAO J Y , XU X , DING N , et al. Flocking motion of multi-agent system by dynamic pinning control[J]. IET Control Theory & Applications, 2017, 11 (5): 714- 722.
|
11 |
YAN T , XU X , LI Z , et al. Flocking of multi-agent system with dynamic topology by pinning control[J]. IET Control Theory & Applications, 2020, 14 (20): 3374- 3381.
|
12 |
LIANG Z L , LIU X Z . Hybrid event-triggered impulsive flocking control for multi-agent systems via pinning mechanism[J]. Applied Mathematical Modelling, 2023, 114, 23- 43.
doi: 10.1016/j.apm.2022.09.035
|
13 |
IZADIPOUR A , GHAISARI J , ASKARI J . Distributed robust adaptive flocking for uncertain nonlinear multi-agent systems with time-varying communication delay[J]. International Journal of Systems Science, 2020, 51 (1): 72- 86.
doi: 10.1080/00207721.2019.1694196
|
14 |
OLFATI-SABER R , JALALKAMALI P . Coupled distributed estimation and control for mobile sensor networks[J]. IEEE Trans.on Automatic Control, 2012, 57 (10): 2609- 2614.
doi: 10.1109/TAC.2012.2190184
|
15 |
SU H , CHEN X , CHEN M Z Q , et al. Distributed estimation and control for mobile sensor networks with coupling delays[J]. ISA Transactions, 2016, 64, 141- 150.
doi: 10.1016/j.isatra.2016.04.025
|
16 |
LUO X Y , LI X L , LI S B , et al. Flocking for multi-agent systems with optimally rigid topology based on information weighted Kalman consensus filter[J]. International Journal of Control, Automation and Systems, 2017, 15 (1): 138- 148.
doi: 10.1007/s12555-015-0134-8
|
17 |
ZHANG L L , DONG X X , YAO L X , et al. Velocity-varying target tracking of mobile sensor network based on flocking control[J]. Journal of Shanghai Jiaotong University (Science), 2021, 26 (4): 446- 453.
doi: 10.1007/s12204-021-2283-7
|
18 |
LIU X Y , XIANG X J , CHANG Y , et al. Hierarchical weighting Vicsek model for flocking navigation of drones[J]. Drones, 2021, 5 (3): 74.
doi: 10.3390/drones5030074
|
19 |
QIU H X , DUAN H B . A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles[J]. Information Sciences, 2020, 509, 515- 529.
doi: 10.1016/j.ins.2018.06.061
|
20 |
HUANG F J , WU P L , LI X X . Distributed flocking control of quadrotor UAVs with obstacle avoidance under the parallel-triggered scheme[J]. International Journal of Control, Automation and Systems, 2021, 19 (3): 1375- 1383.
doi: 10.1007/s12555-019-0315-y
|
21 |
YAN D H , ZHANG W G , CHEN H , et al. Robust control strategy for multi-UAVs system using MPC combined with Kalman-consensus filter and disturbance observer[J]. ISA Transactions, 2023, 135, 35- 51.
doi: 10.1016/j.isatra.2022.09.021
|
22 |
ARRIETA O , CAMPOS D , RICO-AZAGRA J , et al. Model-based optimization approach for PID control of pitch-roll UAV orientation[J]. Mathematics, 2023, 11 (15): 3390.
doi: 10.3390/math11153390
|
23 |
LIU N , SHAO X L , LI J , et al. Attitude restricted back-stepping anti-disturbance control for vision based quadrotors with visibility constraint[J]. ISA Transactions, 2020, 100, 109- 125.
doi: 10.1016/j.isatra.2019.11.004
|
24 |
MARTINEZ-VASQUEZ A H , CASTRO-LINARES R , RODRÍGUEZ-MATA A E , et al. Spherical inverted pendulum on a quadrotor UAV: a flatness and discontinuous extended state observer approach[J]. Machines, 2023, 11 (6): 578.
doi: 10.3390/machines11060578
|
25 |
HU M Y , LEE K , AHN H , et al. Stabilization and tracking of a quadrotor using modified sigmoid sliding mode control[J]. Sensors, 2022, 22 (10): 3618.
doi: 10.3390/s22103618
|
26 |
黄国勇. 变推力轴线无人机飞行控制技术研究[D]. 南京: 南京航空航天大学, 2009.
|
|
HUANG G Y. Research on flight control technology of variable thrust axis UAV[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
|
27 |
WANG H , SHAN J J . Fully distributed event-triggered formation control for multiple quadrotors[J]. IEEE Trans.on Industrial Electronics, 2023, 70 (12): 12566- 12575.
doi: 10.1109/TIE.2023.3239870
|
28 |
邹立岩, 张明智, 柏俊汝. OODA-L模式下的智能无人集群作战仿真建模框架[J]. 国防科技大学学报, 2021, 43 (4): 163- 170.
|
|
ZOU L Y , ZHANG M Z , BAI J R . Modeling framework for intelligent unmanned swarm operation simulation under OODA-L pattern[J]. Journal of National University of Defense Technology, 2021, 43 (4): 163- 170.
|
29 |
YE F , CHEN J , TIAN Y , et al. Cooperative task assignment of a heterogeneous multi-UAV system using an adaptive genetic algorithm[J]. Electronics, 2020, 9 (4): 687.
doi: 10.3390/electronics9040687
|
30 |
HONG Y G , HU H P , GAO L X . Tracking control for multi-agent consensus with an active leader and variable topology[J]. Automatica, 2006, 42 (7): 1177- 1182.
doi: 10.1016/j.automatica.2006.02.013
|
31 |
KHALIL H K . Nonlinear systems[M]. New Jersey: Prentice Hall, 2002: 126- 129.
|
32 |
AHN S M , CHOI H , HA S Y , et al. On collision-avoiding initial configurations to Cucker-Smale type flocking models[J]. Communications in Mathematical Sciences, 2012, 10 (2): 625- 643.
doi: 10.4310/CMS.2012.v10.n2.a10
|
33 |
YEGANEH M S O , OSHNOEI A , MIJA-TOVIC N , et al. Intelligent secondary control of islanded AC microgrids: a brain emotional learning-based approach[J]. IEEE Trans.on Industrial Electronics, 2023, 70 (7): 6711- 6723.
doi: 10.1109/TIE.2022.3203677
|
34 |
HEO J , CHWA D . Robust tracking control using integral sliding mode observer for quadrotors considering motor and propeller dynamics and disturbances[J]. Journal of Electrical Engineering & Technology, 2021, 16 (6): 3247- 3260.
|
35 |
VÁŇA P , FAIGL J . Optimal solution of the generalized Dubins interval problem: finding the shortest curvature-constrained path through a set of regions[J]. Autonomous Robots, 2020, 44 (7): 1359- 1376.
doi: 10.1007/s10514-020-09932-x
|