系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (10): 3462-3472.doi: 10.12305/j.issn.1001-506X.2024.10.23
• 系统工程 • 上一篇
赵长啸, 汪鹏辉, 田小艺, 汪克念
收稿日期:
2023-10-07
出版日期:
2024-09-25
发布日期:
2024-10-22
通讯作者:
汪克念
作者简介:
赵长啸(1989—),男,副教授,博士,主要研究方向为综合化航电系统设计与性能评估基金资助:
Changxiao ZHAO, Penghui WANG, Xiaoyi TIAN, Kenian WANG
Received:
2023-10-07
Online:
2024-09-25
Published:
2024-10-22
Contact:
Kenian WANG
摘要:
航空电子网络的可靠性水平表征其对航电任务完成能力的支撑程度, 基于单一连通性考虑的网络可靠性模型仅涵盖了网络的结构信息, 无法有效评价网络对不同安全关键任务的支撑能力, 影响对网络安全性的真实评价。提出了一种综合考虑任务安全关键属性和网络结构属性的航电网络可靠性分析模型。基于安全关键度邻接矩阵, 采用边扩张分解创建网络的有序二叉决策图, 实现对网络可靠性的评价。通过分析实际航空电子全双工交换式以太网(avionics full-duplex switched ethernet, AFDX)交换机网络, 在加入4个等级的任务安全约束(safety constraint of task, SCT)后, 可有效剔除高风险路径, 任务在网络中可传输的链路安全关键度累积平均分别降低1.19%、9.47%、29.18%和58.14%。
中图分类号:
赵长啸, 汪鹏辉, 田小艺, 汪克念. 考虑安全性需求的航空电子网络可靠性模型[J]. 系统工程与电子技术, 2024, 46(10): 3462-3472.
Changxiao ZHAO, Penghui WANG, Xiaoyi TIAN, Kenian WANG. Avionics network reliability model considering safety requirements[J]. Systems Engineering and Electronics, 2024, 46(10): 3462-3472.
表6
示例网络中的DCi和Gi"
网络节点 | DC值(DCi) | 综合SC(Gi) | |||
网络(1) | 网络(2) | 网络(1) | 网络(2) | ||
SW1 | 0.429 | 0.375 | 0.060 | 0.067 | |
SW2 | 0.429 | 0.500 | 0.106 | 0.158 | |
SW3 | 0.714 | 0.375 | 0.120 | 0.134 | |
SW4 | 0.714 | 0.250 | 0.157 | 0.070 | |
SW5 | 0.429 | 0.375 | 0.125 | 0.140 | |
SW6 | 0.429 | 0.500 | 0.109 | 0.162 | |
SW7 | 0.571 | 0.500 | 0.050 | 0.056 | |
SW8 | 0.571 | 0.375 | 0.193 | 0.162 | |
SW9 | - | 0.375 | - | 0.053 |
1 | CHEN K, DU C J, CHEN J C, et al. Design of virtual simulation experiment platform based on ARINC 653 specification[C]// Proc.of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, 2020: 963-967. |
2 |
DUX Y,DUC L,CHENJ C,et al.A simulation and verification platform for avionics systems based on future air-borne capability environment architecture[J].Applied Sciences,2022,12(22):11533.
doi: 10.3390/app122211533 |
3 |
LIM,ZHUG C,SAVARIAY,et al.Reliability enhancement of redundancy management in AFDX networks[J].IEEE Trans.on Industrial Informatics,2017,13(5):2118-2129.
doi: 10.1109/TII.2017.2732345 |
4 | MA L, WANG Y. Mitigation of sequence inversion in AFDX based on time-triggered scheduling[C]//Proc.of the Integrated Communication, Navigation and Surveillance Conference, 2022. |
5 |
LIJ,LIQ,XIONGH.Enhancing low-priority traffic reconfiguration designs in mixed-critical avionics networks[J].IET Communications,2023,17(13):1524-1540.
doi: 10.1049/cmu2.12639 |
6 |
VILLEGASJ,FORTESS,ESCANOV,et al.Verification and validation framework for AFDX avionics networks[J].IEEE Access,2022,10,66743-66756.
doi: 10.1109/ACCESS.2022.3184329 |
7 | 李键,孙东旭,朱志强.航电FC交换网络可靠性建模与仿真研究[J].电光与控制,2019,26(5):73-76. |
LIJ,SUND X,ZHUZ Q.Modeling and simulation of avionics FC switched network reliability[J].Electronics Optics & Control,2019,26(5):73-76. | |
8 |
LIF,LIUW Y,GAOW J,et al.Design and reliability analysis of a novel redundancy topology architecture[J].Sensors,2022,22(7):2582.
doi: 10.3390/s22072582 |
9 |
LIR Y,LIM N,LIAOH T,et al.An efficient method for evaluating the end-to-end transmission time reliability of a switched ethernet[J].Journal of Network and Computer Applications,2017,88,124-133.
doi: 10.1016/j.jnca.2017.01.038 |
10 | WANG K, WANG S P, SHI J. Integrated reliability theory and evaluation methodology of AFDX[C]//Proc.of the 10th International Conference on Industrial Informatics, 2012: 657-662. |
11 |
BARONC,LOUISV.Framework and tooling proposals for agile certification of safety-critical embedded software in avionic systems[J].Computers in Industry,2023,148,103887.
doi: 10.1016/j.compind.2023.103887 |
12 | 陈瑶,李峭,赵长啸,等.基于OBDD的航空电子网络可靠性分析[J].系统工程与电子技术,2013,35(1):230-236. |
CHENY,LIQ,ZHAOC X,et al.Reliability analysis of avio-nics networks based on OBDD[J].Systems Engineering and Electronics,2013,35(1):230-236. | |
13 | 赵长啸,戴骏,董方正,等.机载时间敏感网络链路安全关键度均衡调度方法[J].航空学报,2024,45(6):315-328. |
ZHAOC X,DAIJ,DONGF Z,et al.Link security critical balance scheduling for airborne time-sensitive network[J].Acta Aeronautica et Astronautica Sinica,2024,45(6):315-328. | |
14 | ZHAOC X,ZHANGW,DONGF Z,et al.Research on resource allocation method of integrated avionics system consi-dering fault propagation risk[J].International Journal of Aerospace Engineering,2022,2022,8652818. |
15 | 于思凡,何锋,熊华钢.优先级驱动的泛化航电网络实时性能分析[J].航空学报,2022,43(7):395-407. |
YUS F,HEF,XIONGH G.Priority-driven generalized real-time performance analysis of avionics network[J].Acta Aeronautica et Astronautica Sinica,2022,43(7):395-407. | |
16 | HOTESCU O A, JAFFRES-RUNSER K, SCHARBARG J L, et al. Towards quality of service provision with avionics full duplex switching[C]//Proc.of the 29th Euromicro Conference on Real-Time Systems, 2017. |
17 |
WENT,DENGY.Identification of influencers in complex networks by local information dimensionality[J].Information Sciences,2020,512,549-562.
doi: 10.1016/j.ins.2019.10.003 |
18 | WANGX J,SLAMUW,GUOW Q,et al.A novel semi local measure of identifying influential nodes in complex networks[J].Chaos, Solitons & Fractals,2022,158,112037. |
19 |
NAMTIRTHAA,DUTTAB,DUTTAA.Semi-global triangular centrality measure for identifying the influential spreaders from undirected complex networks[J].Expert Systems with Applications,2022,206,117791.
doi: 10.1016/j.eswa.2022.117791 |
20 | HOTESCU O, JAFFRES-RUNSER K, SCHARBARG J L, et al. Impact of source scheduling on end-to-end latencies in a QoS-aware avionics network[C]//Proc.of the 34th ACM/SIGAPP Symposium on Applied Computing, 2019. |
21 |
BAYRAMO B,OZCANA.Determining optimal paths of virtual links in avionics full-duplex switched ethernet networks using modified ant colony optimization algorithm[J].Expert Systems with Applications,2023,229,120433.
doi: 10.1016/j.eswa.2023.120433 |
22 |
XUQ,YANGX.Analysis of forward approach for upper bounding end-to-end transmission delays over distributed real-time avionics networks[J].The Aeronautical Journal,2020,124(1279):1399-1435.
doi: 10.1017/aer.2020.33 |
23 | YAOJ G,WUJ H,LIUQ C,et al.System-level scheduling of mixed-criticality traffics in avionics networks[J].IEEE Access,2016,4,5880-5888. |
24 | KUMAR N D, VARDHINI P A H. Implementation of ethernet MAC IP core in the development of AFDX end system card[C]// Proc.of the International Conference on Intelligent Computing and Control Systems, 2019: 593-596. |
25 | KULTUR O R, BILGE H S. Comparative analysis of next ge-neration aircraft data networks[C]//Proc.of the IEEE EUROCON 19th International Conference on Smart Technologies, 2021: 317-320. |
26 | 何锋,周璇,赵长啸,等.航空电子系统机载网络实时性能评价技术[J].北京航空航天大学学报,2020,46(4):651-665. |
HEF,ZHOUX,ZHAOC X,et al.Real-time performance evaluation technology of airborne network for avionics system[J].Journal of Beijing University of Aeronautics and Astronautics,2020,46(4):651-665. | |
27 | JIANG X, GUO L H, HUANG N, et al. Fault cases management system for avionics system with the characteristics of network[C]//Proc.of the 10th International Conference on Reliability, Maintainability and Safety, 2014: 826-830. |
28 | 赵长啸,何锋,阎芳,等.面向风险均衡的AFDX虚拟链路路径寻优算法[J].航空学报,2018,39(1):261-272. |
ZHAOC X,HEF,YANF,et al.Path optimization algorithm of AFDX virtual link to balance the network risk[J].Acta Aeronautica et Astronautica Sinica,2018,39(1):261-272. | |
29 | DAVILAF A,YADAVO P.All-terminal network reliability estimation using convolutional neural networks[J].Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,2022,236(4):584-597. |
30 | WONGVILAISAKULW,NETINANTP,RUKHIRANM.Dynamic multi-criteria decision making of graduate admission recommender system: AHP and fuzzy AHP approaches[J].Sustainability,2023,15(12):9758. |
31 | BANERJEES,HUANGX.Degree centrality and root finding in growing random networks[J].Electronic Journal of Probability,2023,28,42. |
32 | ARP4754A. Guidelines for development of civil aircraft and systems[S]. Warrendale: SAE International, 2010. |
33 | HUH Z,LIUJ X,ZHANGX P,et al.An effective and adaptable K-means algorithm for big data cluster analysis[J].Pattern Recognition,2023,139,109404. |
34 | NIEF P,LIZ H,WANGR,et al.An effective and efficient algorithm for K-means clustering with new formulation[J].IEEE Trans.on Knowledge and Data Engineering,2023,35(4):3433-3443. |
35 | ABDALHAQB,AWADA,HAWASHA.A fast binary decision diagram (BDD)-based reversible logic optimization engine driven by recent meta-heuristic reordering algorithms[J].Microelectronics Reliability,2021,123,114168. |
36 | KUOS Y,LUS K,YEHF M.Determining terminal-pair reliability based on edge expansion diagrams using OBDD[J].IEEE Trans.on Reliability,1999,48(3):234-246. |
37 | KHADIEVK,KHADIEVAA,KNOPA.Exponential separation between quantum and classical ordered binary decision diagrams, reordering method and hierarchies[J].Natural Computing,2023,22(4):723-736. |
38 | HEL F,LIUG J.Verifying computation tree logic of know-ledge via knowledge-oriented Petri nets and ordered binary decision diagrams[J].Computing and Informatics,2021,40(5):1174-1196. |
39 | LATOURA L D,BABAKIB,FOKKINGAD,et al.Exact stochastic constraint optimisation with applications in network analysis[J].Artificial Intelligence,2022,304,103650. |
40 | LIR Y,WANGJ F,LIAOH T,et al.A new method for reliabi-lity allocation of avionics connected via an airborne network[J].Journal of Network and Computer Applications,2015,48,14-21. |
41 | YUQ Y,HOUL H,LIY H,et al.Pipeline failure assessment based on fuzzy Bayesian network and AHP[J].Journal of Pipeline Systems Engineering and Practice,2023,14(1):04022059. |
[1] | 张庭瑜, 曾颖, 李楠, 黄洪钟. 基于深度强化学习的航天器功率-信号复合网络优化算法[J]. 系统工程与电子技术, 2024, 46(9): 3060-3069. |
[2] | 丁泽柳, 季明, 杜静. 基于连通度的作战体系结构可靠性分析方法[J]. 系统工程与电子技术, 2024, 46(9): 3112-3117. |
[3] | 陈志伟, 张罗庚, 方晓彤, 袁远, 崔巍巍, 兑红炎, 洪东跑. 装备体系可靠性概念、建模与预计方法研究[J]. 系统工程与电子技术, 2024, 46(6): 1975-1985. |
[4] | 王希, 任惠, 王威, 张嘉怡, 赵洪山. URLLC场景下信道可靠连通度预测[J]. 系统工程与电子技术, 2024, 46(5): 1810-1819. |
[5] | 袁心悦, 陈洪, 丁璐, 宋磊, 黄丹. 基于安全性建模的民机ILS信号设计[J]. 系统工程与电子技术, 2024, 46(4): 1255-1263. |
[6] | 李贵杰, 詹扬, 李大伟, 夏广庆. 考虑不确定性情况下的故障树重要度分析方法及应用[J]. 系统工程与电子技术, 2024, 46(3): 935-941. |
[7] | 方志耕, 华晨晨, 陈顶, 张靖如, 张亚东, 吴鸿华. 复杂体系可靠性结构分析与建模GERT网络技术[J]. 系统工程与电子技术, 2024, 46(10): 3427-3436. |
[8] | 齐小刚, 周雨桐, 刘立芳. 无人机集群对地作战任务可靠性评估[J]. 系统工程与电子技术, 2023, 45(9): 2971-2978. |
[9] | 张宏军, 黄百乔, 白天. 复杂工程体系适应性机制构建与评价方法[J]. 系统工程与电子技术, 2023, 45(8): 2325-2331. |
[10] | 曾颖, 李彦锋, 王弘毅, 钱华明, 黄洪钟. 联合MRGP和PSO的工业机器人驱动器可靠性分析[J]. 系统工程与电子技术, 2023, 45(8): 2643-2650. |
[11] | 李翔宇, 黄洪钟, 熊晓燕. 考虑冲击与阶段备份的多阶段任务系统可靠性建模[J]. 系统工程与电子技术, 2023, 45(7): 2280-2286. |
[12] | 何燕秋, 王有元, 何俐萍. 基于最大信息熵的长寿命产品可靠度置信区间Bootstrap估计方法[J]. 系统工程与电子技术, 2023, 45(6): 1880-1892. |
[13] | 李犟, 吴和成, 朱晨. 基于半参数退化模型的长寿命产品可靠性评估[J]. 系统工程与电子技术, 2023, 45(6): 1893-1901. |
[14] | 牛浩田, 马存宝, 韩佩, 衣健民. 面向航电系统任务安全性的形式化建模与验证[J]. 系统工程与电子技术, 2023, 45(5): 1553-1569. |
[15] | 李军亮, 祝华远, 王正, 王利明, 张鑫磊. 基于混合Gamma分布的机载产品可靠性建模[J]. 系统工程与电子技术, 2023, 45(2): 614-620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||