1 |
LI Z F , WANG M , MA G . Adaptive optimal trajectory tracking control of AUVs based on reinforcement learning[J]. ISA Transactions, 2023, 137, 122- 132.
doi: 10.1016/j.isatra.2022.12.003
|
2 |
SHEN C , SHI Y , BUCKHAM B . Path-following control of an AUV: a multiobjective model predictive control approach[J]. IEEE Trans.on Control Systems Technology, 2018, 27 (3): 1334- 1342.
|
3 |
ZHANG G C , HUANG H , QIN H D , et al. A novel adaptive second order sliding mode path following control for a portable AUV[J]. Ocean Engineering, 2018, 151, 82- 92.
doi: 10.1016/j.oceaneng.2017.12.054
|
4 |
REZAZADEGAN F , SHOJAEI K , SHEIKHOLESLAM F , et al. A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties[J]. Ocean Engineering, 2015, 107, 246- 258.
doi: 10.1016/j.oceaneng.2015.07.040
|
5 |
ALI N , TAWIAH I , ZHANG W . Finite-time extended state observer based nonsingular fast terminal sliding mode control of autonomous underwater vehicles[J]. Ocean Engineering, 2020, 218, 108179.
doi: 10.1016/j.oceaneng.2020.108179
|
6 |
ZHANG Z Y , LIN M W , LI D J . A double-loop control framework for AUV trajectory tracking under model parameters uncertainties and time-varying currents[J]. Ocean Engineering, 2022, 265, 112566.
doi: 10.1016/j.oceaneng.2022.112566
|
7 |
WU H M, KARKOUB M. Hierarchical backstepping control for trajectory-tracking of autonomous underwater vehicles subject to uncertainties[C]//Proc. of the IEEE 14th International Conference on Control, Automation and Systems, 2014: 1191-1196.
|
8 |
周铸, 李文魁, 吕志彪, 等. 扰动不确定的AUV改进反步控制[J]. 舰船电子工程, 2022, 42 (12): 169- 174.
doi: 10.3969/j.issn.1672-9730.2022.12.037
|
|
ZHOU Z , LI W K , LYU Z B , et al. Improved backstepping control of uncertain AUVs under perturbations[J]. Ship Electronic Engineering, 2022, 42 (12): 169- 174.
doi: 10.3969/j.issn.1672-9730.2022.12.037
|
9 |
李娟, 王佳奇, 丁福光. 基于反馈线性化的AUV三维轨迹跟踪滑模控制[J]. 哈尔滨工程大学学报, 2022, 43 (3): 348- 355.
|
|
LI J , WANG J Q , DING F G . 3-D trajectory tracking sliding mode control of AUV based on feeedback linearization[J]. Journal of Harbin Engineering University, 2022, 43 (3): 348- 355.
|
10 |
李鑫滨, 王鹏, 骆曦, 等. 输入受限下欠驱动AUV轨迹跟踪滑模控制[J]. 水下无人系统学报, 2022, 30 (1): 44- 53.
|
|
LI X B , WANG P , LUO X , et al. Trajectory tracking sliding mode control of underactuated AUV with input constraints[J]. Journal of Underwater Unmanned Systems, 2022, 30 (1): 44- 53.
|
11 |
LI J , DU J L , CHEN C L P . Command-filtered robust adaptive NN control with the prescribed performance for the 3-D trajectory tracking of underactuated AUVs[J]. IEEE Trans.on Neural Networks and Learning Systems, 2021, 33 (11): 6545- 6557.
|
12 |
ZHANG J L , XIANG X B , ZHANG Q , et al. Neural network-based adaptive trajectory tracking control of underactuated AUVs with unknown asymmetrical actuator saturation and unknown dynamics[J]. Ocean Engineering, 2020, 218, 108193.
doi: 10.1016/j.oceaneng.2020.108193
|
13 |
刘用, 杨晓飞, 夏金铭. 基于模糊算法的AUV避障与姿态控制[J]. 江苏大学学报(自然科学版), 2021, 42 (6): 655- 660.
doi: 10.3969/j.issn.1671-7775.2021.06.006
|
|
LIU Y , YANG X F , XIA J M . Obstacle-avoidance and attitude control of AUV based on fuzzy algorithm[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42 (6): 655- 660.
doi: 10.3969/j.issn.1671-7775.2021.06.006
|
14 |
LIANG X , QU X R , WANG N , et al. Three-dimensional trajectory tracking of an underactuated AUV based on fuzzy dynamic surface control[J]. IET Intelligent Transport Systems, 2020, 14 (5): 364- 370.
doi: 10.1049/iet-its.2019.0347
|
15 |
CHEN H X , TANG G Y , WANG S F , et al. Adaptive fixed-time backstepping control for three-dimensional trajectory tracking of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2023, 275, 114109.
doi: 10.1016/j.oceaneng.2023.114109
|
16 |
ZHENG J Q , SONG L , LIU L Y , et al. Fixed-time extended state observer-based trajectory tracking control for autonomous underwater vehicles[J]. Asian Journal of Control, 2022, 24 (2): 686- 701.
doi: 10.1002/asjc.2624
|
17 |
SUN H B , ZONG G D , CUI J W , et al. Fixed-time sliding mode output feedback tracking control for autonomous underwater vehicle with prescribed performance constraint[J]. Ocean Engineering, 2022, 247, 110673.
doi: 10.1016/j.oceaneng.2022.110673
|
18 |
MOULAY E , LECHAPPE V , BERNUAU E , et al. Fixed-time sliding mode control with mismatched disturbances[J]. Automatica, 2022, 136, 110009.
doi: 10.1016/j.automatica.2021.110009
|
19 |
ZHENG J Q , SONG L , LIU L Y , et al. Fixed-time sliding mode tracking control for autonomous underwater vehicles[J]. Applied Ocean Research, 2021, 117, 102928.
doi: 10.1016/j.apor.2021.102928
|
20 |
WANG H B, SU B, WANG Y L, et al. Fixed-time stabilization control for underactuated AUV with external disturbance[C]// Proc. of the IEEE Chinese Control Conference, 2019: 4513-4518.
|
21 |
AN S , WANG X Y , WANG L J , et al. Observer based fixed-time integral sliding mode tracking control for underactuated AUVs via an event-triggered mechanism[J]. Ocean Engineering, 2023, 284, 115158.
doi: 10.1016/j.oceaneng.2023.115158
|
22 |
LIU Y , LIU X P , JING Y W . Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance[J]. Information Sciences, 2018, 468, 29- 46.
doi: 10.1016/j.ins.2018.08.029
|
23 |
SUN Y C , ZHANG Y , QIN H D , et al. Predefined-time prescribed performance control for AUV with improved performance function and error transformation[J]. Ocean Engineering, 2023, 281, 114817.
doi: 10.1016/j.oceaneng.2023.114817
|
24 |
LI Y , HE J Y , ZHANG Q , et al. Predefined-time fault-tolerant trajectory tracking control for autonomous underwater vehicles considering actuator saturation[J]. Actuators, 2023, 12 (4): 171- 192.
doi: 10.3390/act12040171
|
25 |
LI K W , LI Y M . Adaptive predefined-time optimal tracking control for underactuated autonomous underwater vehicles[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10 (4): 1083- 1085.
doi: 10.1109/JAS.2023.123153
|
26 |
ZHANG L , JU X Z , CUI N G . Ascent control of heavy-lift launch vehicle with guaranteed predefined performance[J]. Aerospace Science and Technology, 2021, 110, 106511.
doi: 10.1016/j.ast.2021.106511
|
27 |
ZHOU H P, ZHENG Z W, GUAN Z Y, et al. Control barrier function based nonlinear controller for automatic carrier landing[C]// Proc. of the IEEE 16th International Conference on Control, Automation, Robotics and Vision, 2020: 584-589.
|
28 |
JU X Z , JIANG Y S , JING L , et al. Quantized predefined-time control for heavy-lift launch vehicles under actuator faults and rate gyro malfunctions[J]. ISA transactions, 2023, 138, 133- 150.
doi: 10.1016/j.isatra.2023.02.022
|
29 |
JU X Z , WEI C Z , XU H C , et al. Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints[J]. ISA transactions, 2022, 129, 55- 72.
doi: 10.1016/j.isatra.2022.02.003
|
30 |
ZHANG L , LI D Y , JING L , et al. Appointed-time cooperative guidance law with line-of-sight angle constraint and time-to-go control[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (3): 3142- 3155.
doi: 10.1109/TAES.2022.3221059
|
31 |
CHEN Z R , JU X Z , WANG Z W , et al. The prescribed time sliding mode control for attitude tracking of spacecraft[J]. Asian Journal of Control, 2022, 24 (4): 1650- 1662.
doi: 10.1002/asjc.2569
|
32 |
HARDY G H , LITTLEWOOD J E , PÓLYA G . Inequalities[M]. Cambridge: Cambridge university press, 1952.
|
33 |
YANG M , ZHANG Q , XU K , et al. Adaptive differentiator-based predefined-time control for nonlinear systems subject to pure-feedback form and unknown disturbance[J]. Complexity, 2021, 2021, 7029058.
doi: 10.1155/2021/7029058
|
34 |
NI J K , SHI P . Global predefined time and accuracy adaptive neural network control for uncertain strict-feedback systems with output constraint and dead zone[J]. IEEE Trans.on Systems, Man, and Cybernetics-Systems, 2020, 51 (12): 7903- 7918.
|
35 |
LIU B J , WANG W C , LI Y K , et al. Adaptive quantized predefined-time backstepping control for nonlinear strict-feedback systems[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2022, 69 (9): 3859- 3863.
doi: 10.1109/TCSII.2022.3175739
|
36 |
PETTERSEN K Y , EGELAND O . Time-varying exponential stabilization of the position and attitude of an underactuated autonomous underwater vehicle[J]. IEEE Trans.on Automatic Control, 1999, 44 (1): 112- 115.
doi: 10.1109/9.739086
|