系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (9): 3082-3092.doi: 10.12305/j.issn.1001-506X.2024.09.20
• 系统工程 • 上一篇
苗红1, 连佳欣1, 李伟伟2, 耿国桐3,*, 王浩桐1, 张惠钊1, 吴菲菲1
收稿日期:
2023-09-28
出版日期:
2024-08-30
发布日期:
2024-09-12
通讯作者:
耿国桐
作者简介:
苗红 (1977—), 女, 副教授, 博士, 主要研究方向为技术创新管理Hong MIAO1, Jiaxin LIAN1, Weiwei LI2, Guotong GENG3,*, Haotong WANG1, Huizhao ZHANG1, Feifei WU1
Received:
2023-09-28
Online:
2024-08-30
Published:
2024-09-12
Contact:
Guotong GENG
摘要:
依据前沿技术的前瞻性、先导性、探索性及颠覆性特征, 构建基于数据挖掘的前沿技术识别方法, 可为高效制定技术发展策略、合理调整技术规划布局提供支撑。首先, 以工程索引(engineering index, EI)和德温特创新(Derwent innovation, DI) 平台数据库为数据源, 制定检索表达式采集数据, 并对数据进行预处理。其次, 建立表征前沿技术特征的指标体系, 并对据此筛选出的技术文本数据进行挖掘, 识别前沿技术主题。最后, 以量子计算领域为例开展实证研究, 识别出量子纠错技术、光量子芯片技术等前沿技术点, 经技术专家等验证, 表明识别结果科学有效。
中图分类号:
苗红, 连佳欣, 李伟伟, 耿国桐, 王浩桐, 张惠钊, 吴菲菲. 基于数据挖掘的前沿技术识别方法与实证研究[J]. 系统工程与电子技术, 2024, 46(9): 3082-3092.
Hong MIAO, Jiaxin LIAN, Weiwei LI, Guotong GENG, Haotong WANG, Huizhao ZHANG, Feifei WU. Frontier technology identification method and empirical research based on data mining[J]. Systems Engineering and Electronics, 2024, 46(9): 3082-3092.
表2
前沿技术识别指标体系"
一级指标 | 二级指标 | 三级指标 | 含义/数据源/阈值 |
前沿性 | 前瞻性 | 阶段性 | 处于技术生命周期曲线萌芽期、成长期(文献、专利) |
方向引领性 | 以ESI高被引论文作者的研究文献表征关键学者的关注方向(文献) 基金资助文献表征关键组织的关注方向(文献) | ||
先导性 | 关联性 | 分类码数量表征学科多样性(文献, 阈值: 大于平均值) IPC数量表征技术领域多样性(专利, 阈值: 大于平均值) | |
影响力 | 文献被引频次(文献, 阈值: 大于平均值) 权利要求书项数(专利, 阈值: 大于平均值) | ||
探索性 | 新颖性 | 文献平均出版时间(文献, 阈值: 大于平均值) 专利平均公开时间(专利, 阈值: 大于平均值) | |
创新性 | 对某领域文献的所有关键词进行成对组合, 如果这种组合在之前的文献中没有出现, 说明产生了新组合, 该组合被认为是具有创新性(文献, 阈值: 大于0.5) | ||
对某领域专利的所有IPC大组进行成对组合, 如果这种组合在之前的技术中没有出现, 说明产生了新组合, 该组合被认为是具有创新性(专利, 阈值: 大于0.5) | |||
颠覆性 | 独创性 | 借助专利引用领域的多样性, 即专利的后向引用是否属于其他技术领域, 对技术的突破性程度进行判断(专利, 阈值: 大于0.5) | |
潜在价值 | 目标专利在不同国家或地区专利申请的数量(专利, 阈值: 大于平均值) |
表3
子领域检索表达式"
子领域名称 | DI专利检索表达式 | EI文献检索表达式 | 是否具备前瞻性 |
超导量子计算 | TAB=((superconducting ADJ quantum) or (superconducting ADJ quantum ADJ comput*) or (superconducting ADJ computer NEAR5 device)) | STA=((superconducting quantum) or (superconducting quantum comput*) or (superconducting computer NEAR/5 device)) | 是 |
量子加密技术 | TAB=((quantum ADJ encrypt*) or (quantum near5encrypt*) or (quantum ADJ cryptograph*)) | STA=((quantum encrypt*) or (quantum NEAR/5 encrypt*) or (quantum cryptograph*)) | 否 |
基于光子的 量子计算技术 | TAB=((light ADJ quantum ADJ comput*) or (optical ADJ quantum ADJ comput*) or (single ADJ photon ADJ source) or (ultra-low ADJ loss ADJ light ADJ quantum ADJ line) or (single ADJ photon ADJ detector)) | STA=((light quantum comput*) or (optical quantum comput*) or (single photon source) or (ultra-low loss light quantum line) or (single photon detector)) | 是 |
离子阱量子 计算机 | TAB=((trapped ADJ ion ADJ quantum ADJ comput*) or (quantum ADJ coherence) or (Ion ADJ trap)or(trapped ADJ ion)) | STA=((trapped ion quantum comput*) or (quantum coherence) or (Ion trap) or (trapped ion)) | 否 |
1 | 中国政府网. 国家中长期科学和技术发展规划纲要[EB/OL]. [2023-08-23]. http://www.gov.cn/jrzg/2006-02/09/content_183787.htm. |
CHINESE GOVERNMENT WEBSITE. National Medium and Long TermScience and Technology Development Plan[EB/OL]. [2023-08-23]. http://www.gov.cn/jrzg/2006-02/09/content_183787.htm. | |
2 |
XIE T , XU Y , LI Y . Nonlinear relationship between natural resources and economic growth: the role of frontier technology[J]. Resources Policy, 2024, 90, 104831.
doi: 10.1016/j.resourpol.2024.104831 |
3 |
LIU H , WANG S Z , WANG J L , et al. Supercritical hydrothermal synthesis of copper nanoparticles: experimental and kinetic study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 680, 132670.
doi: 10.1016/j.colsurfa.2023.132670 |
4 | HUANG X G, YU J B, CUI Y B, et al. Overview of artificial intelligence frontier technology and data retrieval application research in power industry[C]//Proc. of the 19th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 2023. |
5 |
XU S , HAO L Y , YANG G C , et al. A topic models based framework for detecting and forecasting emerging technologies[J]. Technological Forecasting and Social Change, 2021, 162, 120366.
doi: 10.1016/j.techfore.2020.120366 |
6 |
KIM G , BAE J . A novel approach to forecast promising technology through patent analysis[J]. Technological Forecasting and Social Change, 2017, 117, 228- 237.
doi: 10.1016/j.techfore.2016.11.023 |
7 | Science. 125 questions: exploration and dis-covery[EB/OL]. [2023-09-18]. http://www.science.org/content/resource/125-questions-exploration-and-discovery. |
8 | PRABHAA S S , BINDU N , MANOJ P , et al. Citation network analysis of plastic electronics: tracing the evolution and emerging research fronts[J]. Materials Today Proceedings, 2020, 33 (2): 1345- 1350. |
9 |
AHMED A , AZAM A , BHUTTA M M A , et al. Discovering the technology evolution pathways for 3Dprinting (3DP) using bibliometric investigation and emerging applications of 3DP during COVID-19[J]. Cleaner Environmental Systems, 2021, 3, 100042.
doi: 10.1016/j.cesys.2021.100042 |
10 |
REHMAN A , XING H L , KHAN M A , et al. Emerging technologies for COVID (ET-CoV) detection and diagnosis: recent advancements, applications, challenges, and future perspectives[J]. Biomedical Signal Processing and Control, 2023, 83, 104642.
doi: 10.1016/j.bspc.2023.104642 |
80 |
BONETTI J , LINALE N , GROSZ D F . Heralded single-photon sources based on 2D-decorated nanowires[J]. Physics Letters A, 2022, 432, 128018.
doi: 10.1016/j.physleta.2022.128018 |
81 |
ZHOU X C , ZHANG Z H , GUO W L . Dislocations as single photon sources in two-dimensional semiconductors[J]. Nano Letters, 2020, 20 (6): 4136- 4143.
doi: 10.1021/acs.nanolett.9b05305 |
82 |
YE Z C , ZHAO P , TWAYANA K , et al. Overcoming the quantum limit of optical amplification in monolithic waveguides[J]. Science Advances, 2021, 7 (38)
doi: 10.1126/sciadv.abi8150 |
83 |
SHAIB A , NAIM M H , FOUDA M E , et al. Efficient noise mitigation technique for quantum computing[J]. Scientific Reports, 2023, 13 (1): 3912.
doi: 10.1038/s41598-023-30510-5 |
84 |
XU X Y , REN G H , FELEPPA T , et al. Self-calibrating programmable photonic integrated circuits[J]. Nature Photonics, 2022, 16 (8): 595- 602.
doi: 10.1038/s41566-022-01020-z |
11 |
CHOI Y , PARK S , LEE S . Identifying emerging technologies to envision a future innovation ecosystem: a machine learning approach to patent data[J]. Scientometrics, 2021, 126, 5431- 5476.
doi: 10.1007/s11192-021-04001-1 |
12 | GARECHANA G , RIO-BELVER R , BILDOSOLA I , et al. A method for the detection and characterization of technology fronts: analysis of the dynamics of technological change in 3D printing technology[J]. Plos One, 2019, 14 (1): e02104411. |
13 |
PARK I , YOON B . Identifying promising research frontiers of pattern recognition through bibliometric analysis[J]. Sustainability, 2018, 10 (11): 4055.
doi: 10.3390/su10114055 |
14 |
MIAARI A A , ALI H M . Batteries temperature prediction and thermal management using machine learning: an overview[J]. Energy Reports, 2023, 10, 2277- 2305.
doi: 10.1016/j.egyr.2023.08.043 |
15 | 李欣, 温阳, 黄鲁成, 等. 一种基于机器学习的研究前沿识别方法研究[J]. 科研管理, 2021, 42 (1): 20- 32. |
LI X , WEN Y , HUANG L C , et al. A study of the research front identification method based on machine learning[J]. Science Research Management, 2021, 42 (1): 20- 32. | |
16 | 袁建霞, 冷伏海, 黄龙光, 等. 科技前沿方向的情报监测分析与综合研判方法探讨[J]. 图书情报工作, 2022, 66 (19): 92- 98. |
YUAN J X , LENG F H , HUANG L G , et al. Exploration of intelligence monitoring, analysis and comprehensive study and judgment methods for S&T frontier direction[J]. Library and Information Service, 2022, 66 (19): 92- 98. | |
17 |
PUCCETTI G , GIORDANO V , SPADA I , et al. Technology identification from patent texts: a novel named entity recognition method[J]. Technological Forecasting and Social Change, 2023, 186, 122160.
doi: 10.1016/j.techfore.2022.122160 |
18 | 周波, 冷伏海. 技术识别研究进展[J]. 情报学进展, 2022, 1, 315- 348. |
ZHOU B , LENG F H . The research progress of technology identification[J]. Advances in Information Science, 2022, 1, 315- 348. | |
19 | 潘教峰, 王海霞, 冷伏海, 等. 《2022研究前沿》——11个大学科领域发展趋势与重点研究问题[J]. 中国科学院院刊, 2023, 38 (1): 154- 166. |
PAN J F , WANG H X , LENG F H , et al. 2022 Research fronts: development trends and key research questions in 11 broad research areas[J]. Bulletin of Chinese Academy of Sciences, 2023, 38 (1): 154- 166. | |
20 |
YOUNG O R . Effectiveness of international environmental regimes: existing knowledge, cutting-edge themes, and research strategies[J]. Proceedings of the National Academy of Sciences, 2011, 108 (50): 19853- 19860.
doi: 10.1073/pnas.1111690108 |
21 |
张春博, 丁堃, 刘则渊. 大型工业实验室基础研究特征及启示——基于IBM实验室的案例研究[J]. 科技进步与对策, 2014, 31 (13): 1- 6.
doi: 10.6049/kjjbydc.2013090514 |
ZHANG C B , DING K , LIU Z Y . Characteristics and inspiration of basic research in large industrial laboratories—a case study based on IBM labs[J]. Science & Technology Progress and Policy, 2014, 31 (13): 1- 6.
doi: 10.6049/kjjbydc.2013090514 |
|
22 |
李佳. 我国创业教育研究热点、前沿及其演进探析——以国家社会科学基金和全国教育科学规划资助项目文献为例[J]. 创新与创业教育, 2023, 14 (2): 21- 31.
doi: 10.3969/j.issn.1674-893X.2023.02.004 |
LI J . On hot topics, frontiers and evolutions of entrepreneurship education in China-based on research literature funded by the national social science fund and the national education science planning project[J]. Innovation and Entrepreneurship Education, 2023, 14 (2): 21- 31.
doi: 10.3969/j.issn.1674-893X.2023.02.004 |
|
23 |
宋凯, 朱彦君. 专利前沿技术主题识别及趋势预测方法——以人工智能领域为例[J]. 情报杂志, 2021, 40 (1): 33- 38.
doi: 10.3969/j.issn.1002-1965.2021.01.005 |
SONG K , ZHU Y J . Patent frontier technology topic identification and trend prediction: a case analysis of artificial intelligence[J]. Journal of Information, 2021, 40 (1): 33- 38.
doi: 10.3969/j.issn.1002-1965.2021.01.005 |
|
24 | KONG Y X, HUANG B Z, WANG Y J, et al. Study on the identification of disruptive technology, evidence from Nano science[C]//Proc. of the 11th International Conference on Distributed, Ambient and Pervasive Interactions, 2023: 76-90. |
25 |
HE Y B , LIN T , ZHANG S . Does complementary technology within an ecosystem affect disruptive innovation? Evidence from chinese electric vehicle listed firms[J]. Technology in Society, 2023, 74, 102330.
doi: 10.1016/j.techsoc.2023.102330 |
26 |
HOPSTER J . What are socially disruptive technologies?[J]. Technology in Society, 2021, 67, 101750.
doi: 10.1016/j.techsoc.2021.101750 |
27 | XU X M, LI J C, JIANG J, et al. A disruptive technology identification method based on multisource data: take unmanned aerial vehicle systems as an example[C]//Proc. of the 7th International Conference on Big Data and Information Analytics, 2021: 428-435. |
28 | LYU L C, WANG X Z, CHEN W, et al. The research on disruptive technology identification based on scientific and technological information mining and expert consultation: a case study on the energy field[C]//Proc. of the 2nd International Conference on Artificial Intelligence in China, 2021: 469-482. |
29 |
CHENG Y , HUANG L C , RAMLOGAN R , et al. Forecasting of potential impacts of disruptive technology in promising technological areas: elaborating the SIRS epidemic model in RFID technology[J]. Technological Forecasting and Social Change, 2017, 117, 170- 183.
doi: 10.1016/j.techfore.2016.12.003 |
30 | RONZHYN A, WIMMER M A, SPITZER V, et al. Using disruptive technologies in government: identification of research and training needs[C]//Proc. of the International Conference on Electronic Government, 2019: 276-287. |
31 |
JIA W F , WANG S , XIE Y P , et al. Disruptive technology identification of intelligent logistics robots in AIoT industry: based on attributes and functions analysis[J]. Systems Research and Behavioral Science, 2022, 39 (3): 557- 568.
doi: 10.1002/sres.2859 |
32 | MORAVEC J W , MARTLNEZ-BRAVO M C . Global trends in disruptive technological change: social and policy implications for education[J]. On the Horizon, 2023, 31 (34): 147- 173. |
33 |
JIA W F , XIE Y P , ZHAO Y N , et al. Research on disruptive technology recognition of China's electronic information and communication industry based on patent influence[J]. Journal of Global Information Management, 2021, 29 (2): 148- 165.
doi: 10.4018/JGIM.2021030108 |
34 | LI X, MA X D. Early identification of potential disruptive technologies using machine learning and text mining[C]//Proc. of the Portland International Conference on Management of Engineering and Technology, 2023. |
35 |
ZHENG L X , WANG W J . Evaluation indicators of space frontier technology based on D-ANP[J]. Journal of Physics: Conference Series, 2023, 2569 (1): 012045.
doi: 10.1088/1742-6596/2569/1/012045 |
36 |
李琳琳, 路云飞, 张壮, 等. 基于信息优势的指控系统指标体系构建及建模[J]. 系统工程与电子技术, 2018, 40 (3): 577- 582.
doi: 10.3969/j.issn.1001-506X.2018.03.14 |
LI L L , LU Y F , ZHANG Z , et al. System construction and modeling of command and control system index based on information superiority[J]. Systems Engineering and Electronics, 2018, 40 (3): 577- 582.
doi: 10.3969/j.issn.1001-506X.2018.03.14 |
|
37 | 高楠, 彭鼎原, 傅俊英, 等. 基于专利IPC分类与文本信息的前沿技术演进分析——以人工智能领域为例[J]. 情报理论与实践, 2020, 43 (4): 123- 129. |
GAO N , PENG D Y , FU J Y , et al. Research on technology fronts prediction based on patent IPC classification and text information—taking the field of artificial intelligence as an example[J]. Information Studies: Theory & Application, 2020, 43 (4): 123- 129. | |
38 |
LIAO H C , TANG M , LI Z M , et al. Bibliometric analysis for highly cited papers in operations research and management science from 2008 to 2017 based on Essential Science Indicators[J]. Omega, 2019, 88, 223- 236.
doi: 10.1016/j.omega.2018.11.005 |
39 |
JI B , ZHAO Y Q . Trend and status of the NSFC funded projects for constructed wetlands in the last decade in China[J]. Ecological Engineering, 2023, 194, 107057.
doi: 10.1016/j.ecoleng.2023.107057 |
40 | 黄鲁成, 成雨, 吴菲菲, 等. 技术预测与技术预见及其客观分析方法[J]. 创新与创业管理, 2013, 1, 119- 132. |
HUANG L C , CHENG Y , WU F F , et al. Technology forecasting, technology foresight and objective analysis method[J]. Management of Innovation and Entrepreneurship, 2013, 1, 119- 132. | |
41 |
WANG H Y , SUN B , WANG P . Dominant technology identification model based on patent information toward sustainable energy development[J]. IEEE Access, 2019, 7, 141374- 141385.
doi: 10.1109/ACCESS.2019.2939381 |
42 |
HO Y S . Classic articles on social work field in Social Science Citation Index: a bibliometric analysis[J]. Scientometrics, 2014, 98 (1): 137- 155.
doi: 10.1007/s11192-013-1014-8 |
43 |
LEVITT J M , THELWALL M . The most highly cited library and information science articles: interdisciplinarity, first authors and citation patterns[J]. Scientometrics, 2009, 78 (1): 45- 67.
doi: 10.1007/s11192-007-1927-1 |
44 |
VERHOEVEN D , BAKKER J , VEUGELERS R . Measuring technological novelty with patent-based indicators[J]. Research Policy, 2016, 45 (3): 707- 723.
doi: 10.1016/j.respol.2015.11.010 |
45 | 黄鲁成, 蒋林杉, 吴菲菲. 萌芽期颠覆性技术识别研究[J]. 科技进步与对策, 2019, 36 (1): 10- 17. |
HUANG L C , JIANG L S , WU F F . The identification of disruptive technology on emerging stage[J]. Science & Technology Progress and Policy, 2019, 36 (1): 10- 17. | |
46 | Committee on forecasting future disruptive technologies(CFFDT). Persistent forecasting of disruptive technologies[EB/OL]. [2023-09-18]. http://xueshu.baidu.com/usercenter/paper/show?paperid=ae7f0c3f4d489fe8581bc4f94353b467&-site=xueshu_se. |
47 | EGLI F, JOHNSTONE N, MENON C. Identifying and inducing breakthrough inventions: an application related to climate change mitigation[R]. Paris: Organisation for Economic Cooperation and Development, 2015. |
48 | JIANG M. Very large language model as a unified methodology of text mining[EB/OL]. [2023-08-03]. http://doi.org/10.48550/arXiv.2212.09271. |
49 |
CHOWDHURY S , ALZARRAD A . Applications of text mining in the transportation infrastructure sector: a review[J]. Information, 2023, 14 (4): 201.
doi: 10.3390/info14040201 |
50 |
RASOOL U R , AHMAD H F , RAFIQUE W , et al. Quantum computing for healthcare: a review[J]. Future Internet, 2023, 15 (3): 94.
doi: 10.3390/fi15030094 |
51 |
LU Y , SIGOV A , RATKIN L , et al. Quantum computing and industrial information integration: a review[J]. Journal of Industrial Information Integration, 2023, 35, 100511.
doi: 10.1016/j.jii.2023.100511 |
52 | LOKE S W. From distributed quantum computing to quantum internet computing: an overview[EB/OL]. [2023-08-03]. http://doi.org/10.48550/arXiv.2208.10127. |
53 | STOOΒ V , ULMKE M , GOVAERS F . Quantum computing for applications in data fusion[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (2): 2002- 2012. |
54 | JERBI D. Revolutionizing computing: a comprehensive introduction to quantum computing[EB/OL]. [2023-08-03]. http://doi.org/10.36227/techrxiv.22710361.v1. |
55 | GUAN X, FAN J, BIAN Y B, et al. An efficient numerical method for solving the thermodynamic model of silver powder heat exchanger and its applications in the development of dilution refrigerator[EB/OL]. [2023-08-03]. http://ssrn.com/abstract=4691032. |
56 | ZHAI Y J , WU S G , MA D , et al. Development of a cryogen-free dilution refrigerator for superconducting quantum computing[J]. IEEE Trans. on Applied Superconductivity, 2024, 34 (3): 1700105. |
57 | ZHENG M W, LI J G, GUO H W, et al. Dry dilution refrige-rator driven byhigh-power 3he linear compressor[EB/OL]. [2023-08-03]. http://ssrn.com/abstract=4596026. |
58 |
LI S , XUE J , CHEN T , et al. High-fidelity geometric quantum gates with short paths on superconducting circuits[J]. Advanced Quantum Technologies, 2021, 4 (5): 2000140.
doi: 10.1002/qute.202000140 |
59 |
ZHU D Q , JAAKO T , HE Q Y , et al. Quantum computing with superconducting circuits in the picosecond regime[J]. Physical Review Applied, 2021, 16, 014024.
doi: 10.1103/PhysRevApplied.16.014024 |
60 |
SUBRAMANIAN M , LUPASCU A . Efficient two-qutrit gates in superconducting circuits using parametric coupling[J]. Physical Review A, 2023, 108, 062616.
doi: 10.1103/PhysRevA.108.062616 |
61 |
GONG M , YUAN X , WANG S Y , et al. Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits[J]. National Science Review, 2022, 9 (1): nwab011.
doi: 10.1093/nsr/nwab011 |
62 |
GUO Q H , ZHAO Y Y , GRASSL M , et al. Testing a quantum error-correcting code on various platforms[J]. Science Bulletin, 2021, 66 (1): 29- 35.
doi: 10.1016/j.scib.2020.07.033 |
63 | PICKETT W E . Design for a room-temperature superconductor[J]. Journal of Superconductivity and Novel Magnetism, 2006, 19, 291- 297. |
64 | KUMAR K , KARN N K , AWANA V P S . Synthesis of possible room temperature superconductor LK-99: Pb9Cu(PO4)6O[J]. Superconductor Science and Technology, 2023, 36, 10. |
65 |
HIRSCH J E . On the ac magnetic susceptibility of a room temperature superconductor: anatomy of a probable scientific fraud[J]. Physica C: Superconductivity and its Applications, 2023, 613, 1354228.
doi: 10.1016/j.physc.2023.1354228 |
66 |
CAI X , ZHOU B Y , WU Y F , et al. Scaling superconducting quantum chip with highly integratable quantum building blocks[J]. Superconductor Science and Technology, 2023, 36 (8): 085001.
doi: 10.1088/1361-6668/acdafe |
67 | LIANG C, LI Z Y, ZHANG M F, et al. A superconducting quantum chip architecture design method for quantum programs[C]//Proc. of the 3rd International Symposium on Computer Technology and Information Science, 2023: 1115-1121. |
68 |
DUAN P , CHEN Z F , ZHOU Q , et al. Mitigating crosstalk-induced qubit readout error with shallow-neural-network discrimination[J]. Physical Review Applied, 2021, 16 (2): 024063.
doi: 10.1103/PhysRevApplied.16.024063 |
69 | HORIKAWA J , KAWAKAMI A , HYODO M , et al. Study of midinfrared superconducting detector with phased-array nanoslot antenna[J]. IEEE Trans.on Applied Superconductivity, 2015, 25 (3): 2301005. |
70 |
DRYAZGOV M A , KORNEEVA Y P , KORNEEV A A . Electrothermal model of a microstrip superconducting detector with photon number resolution[J]. Bulletin of the Russian Academy of Sciences: Physics, 2022, 86 (6): 678- 682.
doi: 10.3103/S1062873822060107 |
71 |
CHENG X Y , WANG R , YANG N X , et al. Thermal transport in multiple majorana edge states of hybrid topological superconductor junctions[J]. Solid State Communications, 2023, 369, 115182.
doi: 10.1016/j.ssc.2023.115182 |
72 |
YANG Y S , TANG G X , YAO C , et al. Possible kondo scattering and its signature in seebeck coefficient in topological superconductor Fe1+yTe0.55Se0.45[J]. Journal of Magnetism and Magnetic Materials, 2022, 564, 170126.
doi: 10.1016/j.jmmm.2022.170126 |
73 |
DENG Y T , HE Y . Exact solutions of topological superconductor model with Hubbard interactions[J]. Physics Letters A, 2021, 397, 127260.
doi: 10.1016/j.physleta.2021.127260 |
74 |
LARA G A , RAMOS-ANDRADE J P , ZAMBRANO D , et al. Kondo effect in a quantum dot embedded between topological superconductors[J]. Physica E: Low-dimensional Systems and Nanostructures, 2023, 152, 115743.
doi: 10.1016/j.physe.2023.115743 |
75 |
HAO Z F , ZOU K , MENG Y , et al. High-performance eight-channel system with fractal superconducting nanowire single-photon detectors[J]. Chip, 2024, 3 (2): 100087.
doi: 10.1016/j.chip.2024.100087 |
76 |
HU X L , CHENG Y H , GU C , et al. Superconducting nanowire single-photon detectors: recent progress[J]. Science Bulletin, 2015, 60 (23): 1980- 1983.
doi: 10.1007/s11434-015-0960-3 |
77 |
KIM H , BOSE R , SHEN T C , et al. A quantum logic gate between a solid-state quantum bit and a photon[J]. Nature Photonics, 2013, 7 (5): 373- 377.
doi: 10.1038/nphoton.2013.48 |
78 |
HE L , LIU D N , GAO J X , et al. Super-compact universal quantum logic gates with inverse-designed elements[J]. Science Advances, 2023, 9 (21)
doi: 10.1126/sciadv.adg6685 |
79 | LUO W , CAO L , SHI Y Z , et al. Recent progress in quantum photonic chips for quantum communication and internet[J]. Light: Science & Applications, 2023, 12 (1): 175. |
[1] | 冯伟, 龙以君, 全英汇, 邢孟道. 基于SMOTE和深度迁移卷积神经网络的多类不平衡遥感图像分类算法研究[J]. 系统工程与电子技术, 2023, 45(12): 3715-3725. |
[2] | 蔡复青, 王戈, 王悦. 基于使用与维修数据的飞机使用可靠性研究[J]. 系统工程与电子技术, 2018, 40(10): 2388-2392. |
[3] | 刘波, 周健昌. 条件函数依赖的增量计算[J]. 系统工程与电子技术, 2015, 37(11): 2640-2647. |
[4] | 方炜炜, 杨炳儒, 夏红科. 基于SMC的隐私保护聚类模型[J]. Journal of Systems Engineering and Electronics, 2012, 34(7): 1505-1510. |
[5] | 石崇林, 张茂军, 吴琳, 唐宇波, 景民. 基于密度的计算机兵棋推演数据快速聚类算法[J]. Journal of Systems Engineering and Electronics, 2011, 33(11): 2428-2433. |
[6] | 翟云,杨炳儒,曲武,隋海峰. 基于新型集成分类器的非平衡数据分类关键问题研究[J]. Journal of Systems Engineering and Electronics, 2011, 33(1): 196-0201. |
[7] | 曾华,吴耀华,黄顺亮. 非均匀类簇密度聚类的多粒度自学习算法[J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1760-1765. |
[8] | 唐志刚, 杨炳儒, 杨珺. 一种基于马尔可夫链的高维离群点挖掘算法[J]. Journal of Systems Engineering and Electronics, 2010, 32(12): 2721-2724. |
[9] | 吕宗磊, 王建东, 徐涛. 基于模态代表点的聚类评价方法 [J]. Journal of Systems Engineering and Electronics, 2009, 31(8): 1997-2002. |
[10] | 罗来鹏, 刘二根, 曾毅. 粗糙集理论研究的矩阵方法[J]. Journal of Systems Engineering and Electronics, 2009, 31(4): 859-862. |
[11] | 赵静娴, 倪春鹏, 詹原瑞, 杜子平. 一种大规模数据库的组合优化决策树算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 583-587. |
[12] | 侯伟, 杨炳儒, 吴晨生, 周谆. 一种基于滑动窗口的多关系模式频度更新算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 671-676. |
[13] | 孙宇航,孙应飞. 基于网络日志的数据挖掘预处理改进方法[J]. Journal of Systems Engineering and Electronics, 2009, 31(12): 2994-2997. |
[14] | 李晋宏, 杨炳儒, 宋威, 侯伟. 基于包含索引的频繁闭序列模式挖掘的新算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(10): 2485-2488. |
[15] | 周海岩. 建立频繁项目集向量的极大频繁项目集挖掘[J]. Journal of Systems Engineering and Electronics, 2009, 31(10): 2497-2500. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||