1 |
CRUYT A L M , GHOBBAR A A , CURRAN R . A value-based assessment method of the supportability for a new aircraft entering into service[J]. IEEE Trans.on Reliability, 2014, 63 (4): 817- 829.
doi: 10.1109/TR.2014.2335972
|
2 |
WANG R X , GAO J M , LI S Q , et al. Condition-based dynamic supportability mechanism for the performance quality of large-scale electromechanical systems[J]. IEEE Access, 2020, 8, 117036- 117050.
doi: 10.1109/ACCESS.2020.3004736
|
3 |
FERNANDEZ-VILLACANAS M M A. Strategies and organizational changes for the logistics sustainability of military aircraft: towards the digital transformation of in-service support[C]// Proc. of the Developments and Advances in Defense and Security, 2020: 419-429.
|
4 |
LAI C M , TSENG M L . Designing a reliable hierarchical military logistic network using an improved simplified swarm optimization[J]. Computers & Industrial Engineering, 2022, 169, 108153.
|
5 |
DEMERTZIS K, KIKIRAS P, ILIADIS L. A blockchained secure and integrity-preserved architecture for military logistics ope- rations[C]//Proc. of the Engineering Applications of Neural Networks: the 23rd International Conference, 2022.
|
6 |
杨英杰, 于永利, 张柳, 等. 装备维修保障仿真系统灵敏度分析与参数优化[J]. 系统工程与电子技术, 2016, 38 (3): 575- 581.
|
|
YANG Y J , YU Y L , ZHANG L , et al. Sensitivity analysis and parameters optimization for equipment maintenance support simu- lation system[J]. System Engineering and Electronics, 2016, 38 (3): 575- 581.
|
7 |
OWENS A, DE-WECK O, STROMGREN C, et al. Supportability challenges, metrics, and key decisions for future human spaceflight[C]//Proc. of the AIAA SPACE and Astronautics Forum and Exposition, 2017.
|
8 |
王宏, 兑兴亮, 赵英俊. 地空导弹战时装备保障仿真系统设计与实现[J]. 计算机仿真, 2020, 37 (2): 78- 81.
doi: 10.3969/j.issn.1006-9348.2020.02.016
|
|
WANG H , DUI X L , ZHAO Y J . Design and implementation of equipment support simulation system on ground to air missile in wartime[J]. Computer Simulation, 2020, 37 (2): 78- 81.
doi: 10.3969/j.issn.1006-9348.2020.02.016
|
9 |
魏天宇, 张孝虎, 雷宇, 等. 基于Petri网的战时空空导弹保障建模[J]. 指挥控制与仿真, 2019, 41 (2): 37- 41.
doi: 10.3969/j.issn.1673-3819.2019.02.007
|
|
WEI T Y , ZHANG X H , LEI Y , et al. Wartime air-to-air missile support model based on petri net[J]. Command Control and Simulation, 2019, 41 (2): 37- 41.
doi: 10.3969/j.issn.1673-3819.2019.02.007
|
10 |
魏圣军, 吴法文, 张琳, 等. 基于系统动力学的装备维修级别决策研究[J]. 兵器装备工程学报, 2020, 41 (3): 51- 56.
doi: 10.11809/bqzbgcxb2020.03.010
|
|
WEI S J , WU F W , ZHANG L , et al. Equipment maintenance level decision-making based on system dynamics[J]. Journal of Ordnance Equipment Engineering, 2020, 41 (3): 51- 56.
doi: 10.11809/bqzbgcxb2020.03.010
|
11 |
米巧丽, 卢明章, 李亚杰, 等. 基于着色算子的导弹综合保障仿真系统设计[J]. 战术导弹技术, 2022, (1): 21- 28.
|
|
MI Q L , LU M Z , LI Y J , et al. Design of a simulation system for missile integration support based on colored operators[J]. Tactical Missile Technology, 2022, (1): 21- 28.
|
12 |
KENEALLY S K , ROBBINS M J , LUNDAY B J . A Markov decision process model for the optimal dispatch of military medical evacuation assets[J]. Health Care Management Science, 2016, 9, 111- 129.
|
13 |
ABDULLAH A , ASHUTOSH T . A novel approach for model- ling complex maintenance systems using discrete event simu-lation[J]. Reliability Engineering & System Safety, 2016, 154, 160- 170.
|
14 |
郭璐, 刘晓东. 多扰动下面向设计的导弹装备保障系统仿真[J]. 西北工业大学学报, 2022, 40 (5): 1116- 1124.
doi: 10.3969/j.issn.1000-2758.2022.05.020
|
|
GUO L , LIU X D . Simulation on design-oriented missile equipment support system under multiple disturbances[J]. Journal of Northern Polytechnical University, 2022, 40 (5): 1116- 1124.
doi: 10.3969/j.issn.1000-2758.2022.05.020
|
15 |
ADRIAN S H , JAVIER F , PATRICK H , et al. Agent-based simulation for horizontal cooperation in logistics and transportation: from the individual to the grand coalition[J]. Simulation Modelling Practice and Theory, 2018, 85, 47- 59.
doi: 10.1016/j.simpat.2018.04.002
|
16 |
GUO L , LIU X D . Mission-oriented missile equipment support system modeling: considering the failure and health state[J]. Mathematical Problems in Engineering, 2022, 40 (5): 1116- 1124.
|
17 |
雷建长, 王小辉, 郑小鹏. 地地导弹武器装备发展脉络与趋势[J]. 战术导弹技术, 2020, (4): 21- 28.
|
|
LEI J C , WANG X H , ZHENG X P . The development context and future trend of surface-to-surface missiles[J]. Tactical Missile Technology, 2020, (4): 21- 28.
|
18 |
刘永才. 新形势下武器装备发展思考[J]. 战术导弹技术, 2020, 1- 12.
|
|
LIU Y C . Thoughts on the development of weapons and equipment under the new situation[J]. Tactical Missile Technology, 2020, 1- 12.
|
19 |
SOUZA R L C , GHASEMI A , SAIF A , et al. Robust job-shop scheduling under deterministic and stochastic unavailability constraints due to preventive and corrective maintenance[J]. Computers & Industrial Engineering, 2022, 168, 108130.
|
20 |
WANG G G , GAO D , PEDRYCZ W . Solving multiobjective fuzzy job-shop scheduling problem by a hybrid adaptive diffe-rential evolution algorithm[J]. IEEE Trans.on Industrial Infor- matics, 2022, 18 (12): 8519- 8528.
doi: 10.1109/TII.2022.3165636
|
21 |
尹丽丽, 寇力, 范文慧. 基于多Agent的装备保障体系分布式建模与仿真方法[J]. 系统仿真学报, 2017, 29 (12): 3185- 3194.
|
|
YIN L L , KOU L , FAN W H . Distributed modeling and simulation method of equipment support system based on multi-agent[J]. Journal of System Simulation, 2017, 29 (12): 3185- 3194.
|
22 |
寇力, 范文慧, 宋爽, 等. 基于多智能体的装备保障体系建模与仿真[J]. 中国科学: 信息科学, 2018, 48 (7): 794- 809.
|
|
KOU L , FAN W H , SONG S , et al. Modeling and simulation method of equipment support system based on multiple agents[J]. SCIENTIA SINICA Informationis, 2018, 48 (7): 794- 809.
|
23 |
邢彪, 曹军海, 宋太亮, 等. 基于Agent的维修保障仿真系统设计与实现[J]. 系统仿真学报, 2017, 29 (1): 129- 135.
|
|
XING B , CAO J H , SONG T L , et al. Design and implementation for maintenance support simulation system based on agent[J]. Journal of System Simulation, 2017, 29 (1): 129- 135.
|
24 |
ZHU H H , ZHANG Y , LIU C C , et al. An adaptive reinforcement learning-based scheduling approach with combination rules for mixed-line job shop production[J]. Mathematical Problems in Engineering, 2022, 2022, 1672166.
|
25 |
ZHANG F Q , BAI J Y , YANG D Y , et al. Digital twin data-driven proactive job-shop scheduling strategy towards asymmetric manufacturing execution decision[J]. Scientific Reports, 2022, 12 (1): 1546.
|
26 |
ZHANG Y , ZHU H H , TANG D B , et al. Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78, 102412.
|
27 |
李小涛, 彭翀. 基于混合多智能体遗传算法的作业车间调度问题研究[J]. 北京航空航天大学学报, 2017, 43 (2): 410- 416.
|
|
LI X T , PENG C . Hybrid multiagent genetic algorithm for job shop scheduling problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (2): 410- 416.
|
28 |
ZHOU Z , LI F M , ZHU H X , et al. An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments[J]. Neural Computing and Applications, 2020, 32, 1531- 1541.
|
29 |
ZOUHRI W , HOMRI L , DANTAN J Y . Handling the impact of feature uncertainties on SVM: a robust approach based on Sobol sensitivity analysis[J]. Expert Systems with Applications, 2022, 189, 115691.
|
30 |
BALLESTER-RIPOLL R , LEONELLI M . Computing Sobol indices in probabilistic graphical models[J]. Reliability Engineering & System Safety, 2022, 225, 108573.
|