系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (9): 2988-2998.doi: 10.12305/j.issn.1001-506X.2024.09.11

• 传感器与信号处理 • 上一篇    下一篇

基于EfficientNet的多通道雷达目标微动特征分类方法

王潇怡1,2, 罗运华1, 喻忠军1,2,*, 孙浩1, 王晓蓓1   

  1. 1. 中国科学院空天信息创新研究院, 北京 100094
    2. 中国科学院大学电子电气与通信工程学院, 北京 100049
  • 收稿日期:2023-05-12 出版日期:2024-08-30 发布日期:2024-09-12
  • 通讯作者: 喻忠军
  • 作者简介:王潇怡 (1999—), 女, 硕士研究生, 主要研究方向为雷达目标识别、雷达智能化信息处理
    罗运华 (1987—), 男, 副研究员, 博士, 主要研究方向为机载高分辨率SAR成像与运动补偿、动目标检测与数据处理、多源图像信息融合、信息智能提取
    喻忠军 (1980—), 男, 研究员, 博士, 主要研究方向为微系统微集成、微波毫米波电路模块、先进相控阵天馈技术
    孙浩 (1991—), 男, 助理研究员, 博士, 主要研究方向为雷达组网、目标检测与跟踪
    王晓蓓 (1992—), 女, 助理研究员, 硕士, 主要研究方向为雷达智能化信息处理、SAR成像

Multi-channel radar target micro-motion feature classification method based on EfficientNet

Xiaoyi WANG1,2, Yunhua LUO1, Zhongjun YU1,2,*, Hao SUN1, Xiaobei WANG1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-05-12 Online:2024-08-30 Published:2024-09-12
  • Contact: Zhongjun YU

摘要:

针对在低空雷达监视场景下, 行人、车辆、无人机等目标分类任务中目标微动特征难以提取导致分类准确率较低的问题, 提出一种基于EfficientNet的多通道雷达目标微动特征分类方法。首先, 根据杂波、目标和噪声信号的能量分布差异, 提出多能量奇异值分解方法抑制杂波和噪声, 增强目标微动特征。随后, 联合雷达和差通道时频信息特点, 设计多通道EfficientNet模型, 结合多通道微动特性进一步实现目标的准确分类。最后, 利用雷达实测目标数据对所提方法进行验证。结果表明, 所提方法在保证较低模型复杂度的情况下, 相比于其他方法在准确率上有显著提升。

关键词: 多通道雷达, 微动目标分类, EfficientNet, 奇异值分解

Abstract:

To solve the problem on low classification accuracy caused by the difficulty of extracting features of micro-motion targets, such as pedestrians, vehicles, and drones in low-altitude radar monitoring scenarios, a multi-channel radar target micro-motion feature classification method based on EfficientNet is proposed. Firstly, a multi-energy singular value decomposition method is proposed to suppress clutter and noise, and enhance the micro-motion characteristics of the target based on the energy distribution differences between the clutter, target, and noise signals. Secondly, the multi-channel EfficientNet model is designed to combine time-frequency information features in radar sum and difference channels, and further fuse multi-channel micro-motion features to achieve accurate target classification. Finally, the effectiveness of the proposed method is verified through experiments using radar measured target data. The results show that compared with other methods, the proposed method significantly improves classification accuracy with low model complexity.

Key words: multi-channel radar, classification of micro-motion targets, EfficientNet, singular value decomposition

中图分类号: