1 |
MELVIN W L . A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19 (1): 19- 35.
doi: 10.1109/MAES.2004.1263229
|
2 |
REED I S , MALLETT J D , BRENNAN L E . Rapid convergence rate in adaptive arrays[J]. IEEE Trans.on Aerospace and Electronic Systems, 1974, AES-10 (6): 853- 863.
doi: 10.1109/TAES.1974.307893
|
3 |
SONG D , CHEN S Y , LI H T , et al. Space-time adaptive processing via random matrix theory for finite training samples[J]. IEEE Sensors Journal, 2023, 23 (7): 7334- 7344.
doi: 10.1109/JSEN.2023.3245581
|
4 |
MELVIN W L . Space-time adaptive radar performance in hetero- geneous clutter[J]. IEEE Trans.on Aerospace and Electronic Systems, 2000, 36 (2): 621- 633.
doi: 10.1109/7.845251
|
5 |
CHEN W , XIE W C , WANG Y L . Short-range clutter suppression for airborne radar using sparse recovery and orthogonal projection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19, 3500605.
|
6 |
WANG L Y , HUANG P H , XIA X G , et al. Nonstationary clutter compensation for airborne surveillance radar systems with crab angle[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 3505405.
|
7 |
TAO F Y , WANG T , WU J X , et al. A knowledge aided SPICE space time adaptive processing method for airborne radar with conformal array[J]. Signal Processing, 2018, 152, 54- 62.
doi: 10.1016/j.sigpro.2018.05.015
|
8 |
LI M , SUN G H , TONG J , et al. Covariance matrix whitening-based training sample selection method for airborne radar[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18 (4): 647- 651.
|
9 |
王晓明, 李军, 张圣鹋, 等. 基于稀疏恢复谱相似度的自适应样本筛选算法[J]. 系统工程与电子技术, 2018, 40 (5): 976- 981.
|
|
WANG X M , LI J , ZHANG S M , et al. Adaptive sample selection algorithm based on sparse recovery spectral similarity[J]. System Engineering and Electronics, 2018, 40 (5): 976- 981.
|
10 |
刘汉伟, 张永顺, 王强, 等. 基于稀疏重构的机载雷达训练样本挑选方法[J]. 系统工程与电子技术, 2010, 38 (7): 1532- 1537.
doi: 10.3969/j.issn.1001-506X.2010.07.042
|
|
LIU H W , ZHANG Y S , WANG Q , et al. Training sample selection for airborne radar algorithm based on sparse reconstruction[J]. Systems Engineering and Electronics, 2010, 38 (7): 1532- 1537.
doi: 10.3969/j.issn.1001-506X.2010.07.042
|
11 |
李明, 何子述. 基于输出信杂噪比的机载雷达训练样本选择算法[J]. 电子科技大学学报, 2021, 50 (5): 676- 681.
|
|
LI M , HE Z S . Output SCNR-based training samples selection method for airborne radar[J]. Journal of University of Electronic Science and Technology of China, 2021, 50 (5): 676- 681.
|
12 |
DUAN K Q , XU H , YUAN H D , et al. Reduced-DOF three-dimensional STAP via subarray synthesis for nonsidelooking planar array airborne radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 56 (4): 3311- 3325.
|
13 |
侯铭, 谢文冲. 端射阵机载雷达稀疏恢复非平稳杂波抑制方法[J]. 现代雷达, 2023, 45 (2): 52- 59.
|
|
HOU M , XIE W C . A non-stationary clutter suppression method for end-fire array airborne radar based on sparse reco-very[J]. Modern Radar, 2023, 45 (2): 52- 59.
|
14 |
XIONG Y Y , XIE W C , WANG Y L . Nonstationary clutter suppression based on four dimensional clutter spectrum for airborne radar with conformal array[J]. IEEE Access, 2022, 10, 51850- 51861.
doi: 10.1109/ACCESS.2022.3174550
|
15 |
SHI J X , XIE L , CHENG Z Y , et al. Angle-Doppler channel selection method for reduced-dimension STAP based on sequential convex programming[J]. IEEE Communications Letters, 2021, 25 (9): 3080- 3084.
doi: 10.1109/LCOMM.2021.3084973
|
16 |
ZHANG W , HE Z S , LI J , et al. A method for finding best channels in beam-space post-Doppler reduced-dimension STAP[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (1): 254- 264.
doi: 10.1109/TAES.2013.120145
|
17 |
GOLDSTEIN J S , REED I S . Subspace selection for partially adaptive sensor array processing[J]. IEEE Trans.on Aerospace and Electronic Systems, 1997, 33( (2): 539- 544.
|
18 |
SARKAR T K , WANG H , PARK S , et al. A deterministic least-squares approach to space-time adaptive processing (STAP)[J]. IEEE Trans.on Antennas and Propagation, 2001, 49 (1): 91- 103.
doi: 10.1109/8.910535
|
19 |
CRISTALLINI D , BURGER W . A robust direct data domain approach for STAP[J]. IEEE Trans.on Signal Processing, 2011, 60 (3): 1283- 1294.
|
20 |
CHOI W , SARKAR T K , WANG H , et al. Adaptive processing using real weights based on a direct data domain least squares approach[J]. IEEE Trans.on Antennas and Propagation, 2006, 54 (1): 182- 191.
doi: 10.1109/TAP.2005.859753
|
21 |
YANG Z C , LI X , WANG H Q , et al. On clutter sparsity analysis in space-time adaptive processing airborne radar[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10 (5): 1214- 1218.
doi: 10.1109/LGRS.2012.2236639
|
22 |
ZHANG W , AN R X , HE N Y , et al. Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 56 (1): 785- 795.
|
23 |
WANG D G , WANG T , CUI W C , et al. A clutter suppression algorithm via enhanced sparse bayesian learning for airborne radar[J]. IEEE Sensors Journal, 2023, 23 (10): 10900- 10911.
doi: 10.1109/JSEN.2023.3263919
|
24 |
SUN K , MENG H D , WANG Y L , et al. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91 (9): 2222- 2236.
doi: 10.1016/j.sigpro.2011.04.006
|
25 |
YANG Z C , FA R , QIN Y L , et al. Direct data domain sparsity-based STAP utilizing subaperture smoothing techniques[J]. International Journal of Antennas and Propagation, 2015, 2015, 171808.
|
26 |
TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans.on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108
|
27 |
何团, 唐波, 张进, 等. 基于改进OMP的非正侧视MIMO-STAP算法[J]. 探测与控制学报, 2019, 41 (5): 41- 46.
|
|
HE T , TANG B , ZHANG J , et al. An non-side-looking MIMO-STAP algorithm based on improved OMP[J]. Journal of Detection and Control, 2019, 41 (5): 41- 46.
|
28 |
KOH K , KIM S J , BOYD S . An interior-point method for large-scale l1-regularized logistic regression[J]. Journal of Machine learning research, 2007, 8 (7): 1519- 1555.
|
29 |
GORODNITSKY I F , RAO B D . Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm[J]. IEEE Trans.on Signal Processing, 1997, 45 (3): 600- 616.
doi: 10.1109/78.558475
|
30 |
JI S H , XUE Y , CARIN L . Bayesian compressive sensing[J]. IEEE Trans.on Signal Processing, 2008, 56 (6): 2346- 2356.
doi: 10.1109/TSP.2007.914345
|
31 |
WANG Z T , XIE W C , DUAN K Q , et al. Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar[J]. Signal Processing, 2017, 130, 159- 168.
|
32 |
WANG Y K , HE Z S . Thinned knowledge-aided STAP by exploiting structural covariance matrix[J]. IET Radar, Sonar & Navigation, 2017, 11 (8): 1266- 1275.
|
33 |
BOYD S. Lecture notes for EE364B: convex optimization Ⅱ[EB/OL]. [2022-06-25]. http://stanford.edu/class/ee364b/ lectures.html.
|