1 |
吴学礼, 闫枫, 甄然, 等. 基于小波变换和K-SVD的探地雷达杂波抑制研究[J]. 河北科技大学学报, 2021, 42 (2): 111- 118.
|
|
WU X L , YAN F , ZHEN R , et al. Research on adaptive clutter suppression for ground penetrating radar based on wavelet transform and K-SVD[J]. Journal of Hebei University of Science and Technology, 2021, 42 (2): 111- 118.
|
2 |
WU D , ZHU D Y , SHEN M W , et al. Clutter suppression for wideband radar STAP[J]. IEEE Trans.on Geoscience & Remote Sensing, 2022, 60, 5103518.
|
3 |
朱苇杭. 基于弹载SAR成像典型地面目标检测与识别方法研究[D]. 南京: 南京理工大学, 2019.
|
|
ZHU W H. Research on typical ground target detection and re-cognition methods based on missile borne SAR imaging[D]. Nanjing: Nanjing University of Science and Technology, 2019.
|
4 |
ZHOU F , TIAN X D , WANG Y , et al. High-resolution ISAR imaging under low SNR with sparse stepped-frequency chirp signals[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (10): 8338- 8348.
doi: 10.1109/TGRS.2020.3045971
|
5 |
GUO J P , CHANG S Q , YANG F W , et al. Low-slow-small target detection using stepped-frequency signals in a strong folded clutter environment[J]. IET Radar, Sonar and Navigation, 2021, 15 (9): 1030- 1044.
doi: 10.1049/rsn2.12095
|
6 |
SEN Y , PASCAL A , FRANCESCO F , et al. A novel approach to unambiguous Doppler beam sharpening for forward-looking MIMO radar[J]. IEEE Sensors Journal, 2022, 22 (23): 23494- 23506.
doi: 10.1109/JSEN.2022.3215862
|
7 |
CHEN H M , LI M , ZHANG P , et al. Resolution enhancement for Doppler beam sharpening imaging[J]. IET Radar, Sonar and Navigation, 2015, 9 (7): 843- 851.
doi: 10.1049/iet-rsn.2014.0384
|
8 |
杨磊, 郭鹏程, 罗丁利. 调频步进信号目标抽取快速算法研究[J]. 火控雷达技术, 2019, 48 (2): 38- 42.
|
|
YANG L , GUO P C , LUO D L . Research on a fast algorithm for extracting targets from FM stepped-frequency signals[J]. Fire Control Radar Technology, 2019, 48 (2): 38- 42.
|
9 |
刘开元, 周剑雄, 朱永锋, 等. 基于多散射中心对齐的距离像抽取方法[J]. 雷达科学与技术, 2013, 11 (5): 531- 536.
doi: 10.3969/j.issn.1672-2337.2013.05.015
|
|
LIU K Y , ZHOU J X , ZHU Y F , et al. Range profile stitching of moving target based on multiple scattering center alignment[J]. Radar Science and Technology, 2013, 11 (5): 531- 536.
doi: 10.3969/j.issn.1672-2337.2013.05.015
|
10 |
姜沛, 惠明, 张萌, 等. 一种改进的频域带宽合成方法[J]. 南阳师范学院学报, 2021, 20 (3): 40- 44.
doi: 10.3969/j.issn.1671-6132.2021.03.006
|
|
JIANG F , HUI M , ZHANG M , et al. An improved method of frequency domain bandwidth synthesis[J]. Journal of Nanyang Normal University, 2021, 20 (3): 40- 44.
doi: 10.3969/j.issn.1671-6132.2021.03.006
|
11 |
龙腾, 丁泽刚, 肖枫, 等. 星载高分辨频率步进SAR成像技术[J]. 雷达学报, 2019, 8 (6): 782- 792.
|
|
LONG T , DING Z G , XIAO F , et al. Spaceborne high-resolution stepped-frequency SAR imaging technology[J]. Journal of Radars, 2019, 8 (6): 782- 792.
|
12 |
HU X W , TONG N N , ZHANG Y S , et al. Moving target's HRRP synthesis with sparse frequency-stepped chirp signal via atomic norm minimization[J]. IEEE Signal Processing Letters, 2016, 23 (9): 1212- 1215.
doi: 10.1109/LSP.2016.2593704
|
13 |
LIAO Z K , HU J M , LU D W , et al. Motion analysis and compensation method for random stepped frequency radar using the pseu-dorandom code[J]. IEEE Access, 2018, 6, 57643- 57654.
doi: 10.1109/ACCESS.2018.2873784
|
14 |
包云霞, 任丽香, 何佩琨, 等. 频率步进雷达距离互相关测速补偿算法[J]. 系统工程与电子技术, 2008, 30 (11): 2112- 2115.
doi: 10.3321/j.issn:1001-506X.2008.11.019
|
|
BAO Y X , REN L X , HE P K , et al. Velocity measurement and compensation method based on range profile cross-correlation in stepped-frequency radar[J]. Systems Engineering and Electronics, 2008, 30 (11): 2112- 2115.
doi: 10.3321/j.issn:1001-506X.2008.11.019
|
15 |
HU K B , ZHANG X L , SHI J , et al. A novel synthetic bandwidth method based on BP imaging for stepped-frequency SAR[J]. Remote Sensing Letters, 2016, 7 (8): 741- 750.
doi: 10.1080/2150704X.2016.1184351
|
16 |
LU X Y , SU W M , YANG J C , et al. A novel imaging method for random stepped frequency SAR with low SNR[J]. Remote Sensing Letters, 2017, 8 (12): 1190- 1199.
doi: 10.1080/2150704X.2017.1370564
|
17 |
YIN C B, LAO G C, DA R. Virtual frequency diverse array model based step frequency SAR imaging[C]//Proc. of the 12th European Conference on Synthetic Aperture Radar, 2018.
|
18 |
WANG C , ZHANG Q Y , HU J M , et al. An efficient algorithm based on CSA for THz stepped-frequency SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4006505.
|
19 |
CHEN J, LONG T, ZENG T. A novel high-resolution stepped-frequency SAR signal processing method[C]//Proc. of the IET International Radar Conference, 2009.
|
20 |
韩冰, 梁兴东, 李道京, 等. 高分辨率机载调频步进SAR成像处理[J]. 系统仿真学报, 2009, 21 (17): 5511- 5515.
|
|
HAN B , LIANG X D , LI D J , et al. High resolution airborne stepped-frequency SAR imaging[J]. Journal of System Simulation, 2009, 21 (17): 5511- 5515.
|
21 |
王鹏宇, 宋千, 金添. 步进频率SAR快时间多普勒效应补偿新方法[J]. 电子与信息学报, 2009, 31 (9): 2053- 2058.
|
|
WANG P Y , SONG Q , JIN T . A new fast-time Doppler effect compensation method applied to step frequency SAR system[J]. Journal of Electronics & Information Technology, 2009, 31 (9): 2053- 2058.
|
22 |
宋小圆. 弹载DBS技术与目标检测研究[D]. 西安: 西安电子科技大学, 2018.
|
|
SONG X Y. Study on DBS imaging of missile borne and target detection[D]. Xi'an: Xidian University, 2018.
|
23 |
洪永彬, 张勇, 鲁振兴, 等. 一种高效的基于对比度的步进频雷达运动补偿算法[J]. 雷达学报, 2016, 5 (4): 378- 388.
|
|
HONG Y B , ZHANG Y , LU Z X , et al. An efficient contrast-based motion compensation algorithm for stepped-frequency radar[J]. Journal of Radars, 2016, 5 (4): 378- 388.
|
24 |
陈曾平, 张炜承, 林钱强. 宽带雷达ISAR成像相位补偿新方法[J]. 雷达学报, 2013, 2 (1): 23- 29.
|
|
CHEN Z P , ZHANG W C , LIN Q Q . A novel phase compensation method for ISAR imaging in wideband radar[J]. Journal of Radars, 2013, 2 (1): 23- 29.
|
25 |
LIU Y M , MENG H D , ZHANG H , et al. Motion compensation of moving targets for high range resolution stepped-frequency radar[J]. Sensors, 2008, 8 (5): 3429- 3437.
doi: 10.3390/s8053429
|
26 |
YANG T L , DONG Q , HUANG Q H . A novel echo-based error estimation and ripple elimination method for stepped frequency chirp SAR signal[J]. IEEE Access, 2019, 7, 182839- 182845.
doi: 10.1109/ACCESS.2019.2960260
|
27 |
李文吉, 任丽香, 张康, 等. 低信噪比条件下基于距离像互相关的相推测速方法[J]. 信号处理, 2021, 37 (7): 1125- 1132.
|
|
LI W J , REN L X , ZHANG K , et al. A phase-derived velo-city measurement method based on range profiles cross correlation under low SNR[J]. Journal of Signal Processing, 2021, 37 (7): 1125- 1132.
|
28 |
WAHL D E , EICHEL P H , GHIGLIA D C , et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Trans.on Aerospace and Electronic Systems, 1994, 30 (3): 827- 835.
doi: 10.1109/7.303752
|
29 |
HOU X Z , MA Y H . SAR autofocus algorithm of iterative error compensation based on PGA[J]. Journal of Physics: Conference Series, 2022, 2414, 012019.
doi: 10.1088/1742-6596/2414/1/012019
|
30 |
DONG F , AN D X , HUANG X T , et al. A phase calibration method based on phase gradient autofocus for airborne holographic SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (12): 1864- 1868.
doi: 10.1109/LGRS.2019.2911932
|
31 |
ZHANG T H, LI Y C, ZHANG T, et al. Expediting phase gradient autofocus algorithm for SAR imaging[C]//Proc. of the IEEE International Geoscience and Remote Sensing Sympo-sium, 2020.
|
32 |
唐亮. 频率步进SAR/ISAR成像算法研究[D]. 长沙: 国防科学技术大学, 2014.
|
|
TANG L. Research on stepped frequency SAR/ISAR imaging algorithm[D]. Changsha: National University of Defense Technology, 2014.
|