系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (9): 2941-2950.doi: 10.12305/j.issn.1001-506X.2024.09.06

• 电子技术 • 上一篇    下一篇

基于解耦的小样本目标检测方法研究

蔡伟, 王鑫, 蒋昕昊, 杨志勇, 陈栋   

  1. 火箭军工程大学导弹工程学院, 陕西 西安 710025
  • 收稿日期:2023-04-16 出版日期:2024-08-30 发布日期:2024-09-12
  • 通讯作者: 王鑫
  • 作者简介:蔡伟(1974—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为定位定向与光电防护
    王鑫(1999—), 男, 硕士研究生, 主要研究方向为计算机视觉、小样本目标检测
    蒋昕昊(1997—), 男, 博士研究生, 主要研究方向为计算机视觉、目标检测
    杨志勇(1983—), 男, 副教授, 博士研究生导师, 博士, 主要研究方向为定位定向与光电防护
    陈栋(1993—), 男, 硕士研究生, 主要研究方向为定位定向与光电防护

Research on few shot target detection method based on decoupling

Wei CAI, Xin WANG, Xinhao JIANG, Zhiyong YANG, Dong CHEN   

  1. School of Missile Engineering, Rocket Military Engineering University, Xi'an 710025, China
  • Received:2023-04-16 Online:2024-08-30 Published:2024-09-12
  • Contact: Xin WANG

摘要:

针对小样本激化的目标检测耦合问题, 以高价值空中目标为研究对象, 提出一种基于解耦的小样本目标检测算法。首先, 在区域候选网络中引入梯度调整层, 强化区域候选网络, 缓和任务耦合问题。其次, 将目标检测头拆解成分类和回归两个分支, 在前端添加无参平均注意力模块, 缓和特征耦合问题。所提算法可以提高小样本目标检测性能, 增强对新类的检测能力。实验结果表明, 所提算法在1、2、3、5、10样本实验中均表现最佳, 平均精度分别达到32.5%、35.6%、39.6%、41.2%和57.4%。相较于两阶段微调方法, 所提算法检测性能大幅度提高, 能够解决在小样本激化的耦合矛盾下网络检测能力下降的问题, 提升对小样本高价值空中目标的检测精度

关键词: 小样本目标检测, 空中目标, 耦合问题, 深度学习

Abstract:

Aiming at the coupling problem of target detection with few shot intensification, a few shot target detection algorithm based on decoupling is proposed focusing on high-value air targets as the research object. Firstly, a gradient adjustment layer is introduced into the regional candidate network to strengthen the regional candidate network and alleviate the task coupling problem. Secondly, the target detection head is disassembled into two branches, classification and regression, and a parameter-free average attention module is added at the front end to alleviate the feature coupling problem. The proposed algorithm improves the detection performance of few shot target detection and enhances the detection ability of new classes. The experimental results show that the proposed algorithm performs best in the 1, 2, 3, 5 and 10 shot experiments, with average accuracy of 32.5%, 35.6%, 39.6%, 41.2% and 57.4%, respectively. Compared with the two-stage fine-tuning method, the detection performance of the proposed algorithm is greatly improved, which solves the problem of the decline of network detection ability under the coupling contradiction of few shot intensification, and improves the detection accuracy of few shot high-value air targets.

Key words: few shot target detection, air target, coupling issue, deep learning

中图分类号: