系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (9): 2941-2950.doi: 10.12305/j.issn.1001-506X.2024.09.06
蔡伟, 王鑫, 蒋昕昊, 杨志勇, 陈栋
收稿日期:
2023-04-16
出版日期:
2024-08-30
发布日期:
2024-09-12
通讯作者:
王鑫
作者简介:
蔡伟(1974—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为定位定向与光电防护Wei CAI, Xin WANG, Xinhao JIANG, Zhiyong YANG, Dong CHEN
Received:
2023-04-16
Online:
2024-08-30
Published:
2024-09-12
Contact:
Xin WANG
摘要:
针对小样本激化的目标检测耦合问题, 以高价值空中目标为研究对象, 提出一种基于解耦的小样本目标检测算法。首先, 在区域候选网络中引入梯度调整层, 强化区域候选网络, 缓和任务耦合问题。其次, 将目标检测头拆解成分类和回归两个分支, 在前端添加无参平均注意力模块, 缓和特征耦合问题。所提算法可以提高小样本目标检测性能, 增强对新类的检测能力。实验结果表明, 所提算法在1、2、3、5、10样本实验中均表现最佳, 平均精度分别达到32.5%、35.6%、39.6%、41.2%和57.4%。相较于两阶段微调方法, 所提算法检测性能大幅度提高, 能够解决在小样本激化的耦合矛盾下网络检测能力下降的问题, 提升对小样本高价值空中目标的检测精度
中图分类号:
蔡伟, 王鑫, 蒋昕昊, 杨志勇, 陈栋. 基于解耦的小样本目标检测方法研究[J]. 系统工程与电子技术, 2024, 46(9): 2941-2950.
Wei CAI, Xin WANG, Xinhao JIANG, Zhiyong YANG, Dong CHEN. Research on few shot target detection method based on decoupling[J]. Systems Engineering and Electronics, 2024, 46(9): 2941-2950.
1 | 杜芸彦, 李鸿, 杨锦辉, 等. 基于负边距损失的小样本目标检测[J]. 计算机应用, 2022, 42 (11): 3617- 3624. |
DU Y Y , LI H , YANG J H , et al. Few shot target detection based on negative margin loss[J]. Computer Applications, 2022, 42 (11): 3617- 3624. | |
2 | KAUL P, XIE W D, ZISSERMAN A. Label, verify, correct: a simple few shot object detection method[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2022: 14237-14247. |
3 | YIN L, PEREZ-RUA J M, LIANG K J. Sylph: a hypernetwork framework for incremental few-shot object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2022: 9035-9045. |
4 | ZHANG S, WANG L, MURRAY N, et al. Kernelized few-shot object detection with efficient integral aggregation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2022: 19207-19216. |
5 | CHEN T I , LIU Y C , SU H T , et al. Dual-awareness attention for few-shot object detection[J]. IEEE Trans.on Multimedia, 2023, 25 (1): 291- 301. |
6 | FAN Z B, MA Y C, LI Z M, et al. Generalizedfew-shot object detection without forgetting[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 4527-4536. |
7 | 徐鹏帮, 桑基韬, 路冬媛. 类别语义相似性监督的小样本图像识别[J]. 中国图象图形学报, 2021, 26 (7): 1594- 1603. |
XU P B , SANG J T , LU D Y . Few shot image recognition for category semantic similarity monitoring[J]. Chinese Journal of Image Graphics, 2021, 26 (7): 1594- 1603. | |
8 | 张振伟, 郝建国, 黄健, 等. 小样本图像目标检测研究综述[J]. 计算机工程与应用, 2022, 58 (5): 1- 11. |
ZHANG Z W , HAO J G , HUANG J , et al. Summary of research on target detection in small sample images[J]. Computer Engineering and Applications, 2022, 58 (5): 1- 11. | |
9 | SUN B, LI B H, CAI S C, et al. Few-shot object detection via contrastive proposal encoding[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 7352-7362. |
10 | WU A M, HAN Y H, ZHU L C, et al. Universal-prototype enhancing for few-shot object detection[C]//Proc. of the International Conference on Computer Vision, 2021: 9567-9576. |
11 | LI X, ZHANG L, CHEN Y P, et al. One-shot object detection without fine-tuning[EB/OL]. [2023-03-16]. http://arxiv.org/abs/2005.03819. |
12 | HSIEH T I, LO Y C, CHEN H T, et al. One-shot object detection with co-attentionand co-excitation[EB/OL]. [2023-03-16]. http://arxiv.org/abs/1911.12529. |
13 | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few shot object detection[C]//Proc. of the 37th International Conference on Machine Learning, 2020: 9919-9928. |
14 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. |
15 | GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448. |
16 | REN S , HE K , GIRSHICK R , et al. Faster RCNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149. |
17 |
范加利, 田少兵, 黄葵, 等. 基于Faster R-CNN的航母舰面多尺度目标检测算法[J]. 系统工程与电子技术, 2022, 44 (1): 40- 46.
doi: 10.12305/j.issn.1001-506X.2022.01.06 |
FAN J L , TIAN S B , HUANG K , et al. Multiscale target detection algorithm for aircraft carrier surface based on Fast R-CNN[J]. Systems Engineering and Electronics, 2022, 44 (1): 40- 46.
doi: 10.12305/j.issn.1001-506X.2022.01.06 |
|
18 |
张大恒, 张英俊, 张闯. 基Faster R-CNN的电子海图和雷达图像的数据融合[J]. 系统工程与电子技术, 2020, 42 (6): 1267- 1273.
doi: 10.3969/j.issn.1001-506X.2020.06.09 |
ZHANG D H , ZHANG Y J , ZHANG C . Data fusion of electronic charts and radar images based on fast R-CNN[J]. Systems Engineering and Electronics, 2020, 42 (6): 1267- 1273.
doi: 10.3969/j.issn.1001-506X.2020.06.09 |
|
19 |
JIANG X H , CAI W , YANG Z Y , et al. A lightweight multiscale infrared aerocraft recognition algorithm[J]. Arabian Journal for Science and Engineering, 2022, 47 (2): 2289- 2303.
doi: 10.1007/s13369-021-06181-7 |
20 |
JIANG X H , CAI W , DING Y , et al. Camouflaged object detection based on ternary cascade perception[J]. Remote Sensing, 2023, 15 (5): 1188.
doi: 10.3390/rs15051188 |
21 | REDMIN J, DIVALAS, GIRSICK R, et al. You can only watch it once: unified real time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 777-7888. |
22 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271. |
23 | REDMON J, FARHADI A. YOLOv3: an incremental improve- ment[EB/OL]. [2023-03-16]. http://arxiv.org/abs/1804.02767. |
24 | ALEXEY B, WANG C Y, HONG Y. Yolov4: optimal speed and accuracy of object detection[EB/OL]. [2023-03-16]. http://arxiv.org/abs/2004.10934. |
25 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37. |
26 | FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2023-03-16]. http://arxiv.org/abs/1701.06659. |
27 | XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated resi-dual transformations for deep neural networks[C]//Proc. of the IEEE International Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500. |
28 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep network[EB/OL]. [2023-03-16]. http://arxiv.org/abs/1703.03400. |
29 | JAMAL M A, QI G J. Task agnostic meta-learning for few-shot learning[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 11719-11727. |
30 | KARLINSKY L, SHTOK J, HARARY S, et al. RepMet: representative based metric learning for classification and few-shot object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 5197-5206. |
31 | WANG P, LIU L U, SHEN C H, et al. Multiple-attention networks for one learning[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2721-2729. |
32 | TIAN Y L, WANG Y L, KRISHNAN D, et al. Rethinking few-shot image classification: agood embedding is all you need?[C]//Proc. of the European Conference on Computer Vision, 2020: 266-282. |
33 | SUN Q R, LIU Y Y, CHUA T S, et al. Metatransfer learning for few-shot learning[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 403-412. |
34 | LIU Y Y, SUN Q R, LIU A A, et al. LCC: learning to customize and combine neural networks for few-shot Learning[EB/OL]. [2023-03-16]. http://arxiv.org/abs/1904.08479. |
35 | KANG B Y, LIU Z, WANG X, et al. Few shot object detection via feature reweighting[C]//Proc. of the IEEE International Conference on Computer Vision, 2019: 8420-8429. |
36 | XIAO Y, LETEPIT V, MARLET R. Few-shot object detection and viewpoint estimation for objectsin the wild[C]//Proc. of the European Conference on Computer Vision, 2020: 192-210. |
37 | YAN X P, CHEN Z L, XU A N, et al. Meta R-CNN: towards general solver for instancelevel low-shot learning[C]//Proc. of the IEEE International Conference on Computer Vision, 2019: 9577-9586. |
38 | FAN Q, ZHUO W, TANG C K, et al. Few shot object detection with attention RPN and multi-relation detector[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recogni- tion, 2020: 4013-4022. |
39 | WU J X, LIU S T, HUANG D, et al. Multi scale positive sample refinement for fewshot object detection[C]//Proc. of the European Conference on Computer Vision, 2020: 456-472. |
40 | KHANDELWAL S, GOYAL R, SIGAl L. Unified knowledge transfer for any shot object detection and segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 5951-5961. |
41 | ZHANG W L, WANG Y X, FORSYTH D A. Cooperating RPN's improve few-shot object detection[EB/OL]. [2023-03-16]. http://arxiv.org/abs/2011.10142. |
[1] | 尹建国, 盛文, 蒋伟. 基于深度残差收缩网络的雷达空中目标识别[J]. 系统工程与电子技术, 2024, 46(9): 3012-3018. |
[2] | 陈晓萱, 徐书文, 胡绍海, 马晓乐. 基于卷积与自注意力的红外与可见光图像融合[J]. 系统工程与电子技术, 2024, 46(8): 2641-2649. |
[3] | 汪强龙, 高晓光, 吴必聪, 胡子剑, 万开方. 受限玻尔兹曼机及其变体研究综述[J]. 系统工程与电子技术, 2024, 46(7): 2323-2345. |
[4] | 孙先涛, 江汪洋, 陈文杰, 陈伟海, 智亚丽. 基于感兴趣区域的物体抓取位姿检测[J]. 系统工程与电子技术, 2024, 46(6): 1867-1877. |
[5] | 陈雪梅, 刘志恒, 周绥平, 余航, 刘彦明. 基于HRNet的高分辨率遥感影像道路提取方法[J]. 系统工程与电子技术, 2024, 46(4): 1167-1173. |
[6] | 刘帅康, 曹伟, 管志强, 杨学岭, 许金鑫. 基于RMDLPP的雷达空中目标分类[J]. 系统工程与电子技术, 2024, 46(4): 1220-1228. |
[7] | 张天文, 张晓玲, 邵子康, 曾天娇. 基于掩模注意型交互的SAR舰船实例分割[J]. 系统工程与电子技术, 2024, 46(3): 831-838. |
[8] | 施端阳, 林强, 胡冰, 杜小帅. 基于YOLO的航管一次雷达目标检测方法[J]. 系统工程与电子技术, 2024, 46(1): 143-151. |
[9] | 汪萌, 诸兵. 不确定性建模在2D和3D目标检测中的应用[J]. 系统工程与电子技术, 2023, 45(8): 2370-2376. |
[10] | 邵凯, 杜自群, 王光宇. 基于模型剪枝动态调整压缩率的CSI反馈方法[J]. 系统工程与电子技术, 2023, 45(8): 2615-2622. |
[11] | 崔天舒, 王栋, 黄振. 面向空间认知通信的轻量化网络自动调制分类方法[J]. 系统工程与电子技术, 2023, 45(7): 2220-2226. |
[12] | 姜雨, 袁琪, 胡志韬, 吴薇薇, 顾欣. 基于气象因素的机场进离港延误预测[J]. 系统工程与电子技术, 2023, 45(6): 1722-1731. |
[13] | 陈洋, 廖灿辉, 张锟, 刘建, 王鹏举. 基于自监督对比学习的信号调制识别算法[J]. 系统工程与电子技术, 2023, 45(4): 1200-1206. |
[14] | 张晔, 侯毅, 欧阳克威, 周石琳. 单变量序列数据分类方法综述[J]. 系统工程与电子技术, 2023, 45(2): 313-335. |
[15] | 邵正途, 许登荣, 徐文利, 王晗中. 基于LSTM和残差网络的雷达有源干扰识别[J]. 系统工程与电子技术, 2023, 45(2): 416-423. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||