1 |
FARSHCHIAN M, POSNER F L. The Pareto distribution for low grazing angle and high resolution X-band sea clutter[C]//Proc. of the IEEE Radar Conference, 2010: 789-793.
|
2 |
ROSENBERG L, BOCQUET S. The Pareto distribution for high grazing angle sea-clutter[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2013: 4209-4212.
|
3 |
WEINBERG G V . Assessing Pareto fit to high-resolution high-grazing-angle sea clutter[J]. Electronics Letters, 2011, 47 (8): 516- 517.
doi: 10.1049/el.2011.0518
|
4 |
ROSENBERG L, WATTS S, BOCQUET S. Application of the K+Rayleigh distribution to high grazing angle sea-clutter[C]//Proc. of the International Radar Conference, 2014.
|
5 |
FICHE A , ANGELLIAUME S , ROSENBERG L , et al. Analysis of X-band SAR sea-clutter distributions at different grazing angles[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (8): 4650- 4660.
doi: 10.1109/TGRS.2015.2405577
|
6 |
HU J , TUNG W , GAO J . A new way to model nonstationary sea clutter[J]. IEEE Signal Processing Letters, 2009, 16 (2): 129- 132.
doi: 10.1109/LSP.2008.2009844
|
7 |
TSIHRINTZIS G A , NIKIAS C L . Evaluation of fractional, lower-order statistics-based detection algorithms on real radar sea-clutter data[J]. IEE Proceedings-Radar, Sonar & Navigation, 1997, 144 (1): 29- 37.
|
8 |
ZHOU H K , JIANG T . Decision tree based sea-surface weak target detection with false alarm rate controllable[J]. IEEE Signal Processing Letters, 2019, 26 (6): 793- 797.
doi: 10.1109/LSP.2019.2909584
|
9 |
SONG J , CAI F Q , LIU H Y . SAR image detection of sea targets based on two-step CFAR detector of KK distribution[J]. The Journal of Engineering, 2019, 2019 (19): 5644- 5647.
doi: 10.1049/joe.2019.0360
|
10 |
LIU H Y , SONG J , XIONG W , et al. Analysis of amplitude statistical and correlation characteristics of high grazing angle sea-clutter[J]. The Journal of Engineering, 2019, 2019 (20): 6829- 6833.
doi: 10.1049/joe.2019.0494
|
11 |
LIU N B , XU Y A , TIAN Y H , et al. Background classification method based on seep learning for intelligent automotive radar target detection[J]. Future Generation Computer Systems, 2019, 94, 524- 535.
doi: 10.1016/j.future.2018.11.036
|
12 |
LIU N B , JIANG X Y , DING H . Summary of research on characteristics of radar sea clutter and target detection at high grazing angles[J]. Journal of Electronics & Information Technology, 2021, 43 (10): 2771- 2780.
doi: 10.11999/JEIT200451
|
13 |
LI J Y , SHUI P L , GUO Z X , et al. Fast principal component analysis-based detection of small targets in sea clutter[J]. IET Radar, Sonar & Navigation, 2022, 16 (8): 1282- 1291.
|
14 |
ZHANG K , SHUI P L , FENG Y . Detection of sea-surface small targets masked by range sidelobes of large objects[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (2): 1446- 1461.
doi: 10.1109/TAES.2021.3116120
|
15 |
ZHANG K , SHUI P L . Estimation of complex high-resolution range profiles of ships by sparse recovery iterative minimization method[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (5): 3042- 3056.
doi: 10.1109/TAES.2021.3068431
|
16 |
LI X , SHUI P L , ZHANG Z D , et al. External calibration of P-band island-based sea clutter measurement radar on the sea surface[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (7): 5711- 5720.
doi: 10.1109/TGRS.2020.3023714
|
17 |
YU H , SHUI P L , LU K . Outlier-robust tri-percentile para-meter estimation of K-distributions[J]. Signal Processing, 2021, 181, 107906.
doi: 10.1016/j.sigpro.2020.107906
|
18 |
XU S W , ZHU J N , JIANG J Z , et al. Sea-surface floating small target detection by multifeature detector based on isolation forest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 704- 715.
doi: 10.1109/JSTARS.2020.3033063
|
19 |
LIANG X , SHUI P L , SU H T . Bi-phase compound-Gaussian mixture model of sea clutter and scene-segmentation-based target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4661- 4674.
doi: 10.1109/JSTARS.2021.3074172
|
20 |
SHUI P L , XIA X Y , ZHANG Y S . Sea-land segmentation in maritime surveillance radars via K-nearest neighbor classifier[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (5): 3854- 3867.
doi: 10.1109/TAES.2020.2981267
|
21 |
LI X , SHUI P L , XIA X Y , et al. Analysis of UHF-band sea clutter reflectivity at low grazing angles in offshore waters of the Yellow Sea[J]. International Journal of Remote Sensing, 2020, 41 (19): 7472- 7485.
doi: 10.1080/01431161.2020.1760395
|
22 |
YU H , SHUI P L , LU K , et al. Bipercentile parameter estimators of bias reduction for generalised Pareto clutter model[J]. IET Radar, Sonar & Navigation, 2020, 14 (7): 1105- 1112.
|
23 |
MOU X Q , CHEN X L , GUAN J , et al. Sea clutter suppression for radar PPI images based on SCS-GAN[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (11): 1886- 1890.
doi: 10.1109/LGRS.2020.3012523
|
24 |
SHUI P L , LI D C , XU S W . Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (2): 1416- 1430.
doi: 10.1109/TAES.2014.120657
|
25 |
张仁李, 盛卫星, 马晓峰. 基于最大似然差的智能恒虚警检测器[J]. 系统工程与电子技术, 2011, 33 (12): 2631- 2637.
doi: 10.3969/j.issn.1001-506X.2011.12.12
|
|
ZHANG R L , SHENG W X , MA X F . Intelligent CFAR detector based on maximum likelihood difference[J]. Systems Engineering and Electronics, 2011, 33 (12): 2631- 2637.
doi: 10.3969/j.issn.1001-506X.2011.12.12
|
26 |
ROHMAN B P A, KURNIAWAN D, MIFTAHUSHUDUR M T. Switching CA/OS CFAR using neural network for radar target detection in nonhomogeneous environment[C]//Proc. of the IEEE International Electronics Symposium, 2015: 280-283.
|
27 |
WANG L , WANG D , HAO C . Intelligent CFAR detector based on support vector machine[J]. IEEE Access, 2017, 5, 26965- 26972.
doi: 10.1109/ACCESS.2017.2774262
|
28 |
田玉芳, 尹志盈, 姬光荣. 基于SVM的海面弱目标检测[J]. 中国海洋大学学报, 2013, 43 (7): 104- 109.
|
|
TIAN Y F , YIN Z Y , JI G R . Weak targets detection in sea clutter based on SVM[J]. Periodical of Ocean University of China, 2013, 43 (7): 104- 109.
|
29 |
苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7 (5): 565- 574.
|
|
SU N Y , CHEN X L , GUAN J , et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7 (5): 565- 574.
|
30 |
关键, 刘宁波, 王国庆, 等. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集[J]. 雷达学报, 2023, 12 (2): 456- 469.
|
|
GUAN J , LIU N B , WANG G Q , et al. Sea-detecting radar experiment and target feature data acquisition for dual polarization multistate scattering dataset of marine targets[J]. Journal of Radars, 2023, 12 (2): 456- 469.
|