Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (4): 805-815.doi: 10.21629/JSEE.2018.04.15
• Control Theory and Application • Previous Articles Next Articles
Jiuling XU(), Chaojie ZHANG*(), Chunhui WANG(), Xiaojun JIN()
Received:
2017-06-29
Online:
2018-08-01
Published:
2018-08-30
Contact:
Chaojie ZHANG
E-mail:xu90@zju.edu.cn;zhangcj@zju.edu.cn;hytgwch@zju.edu.cn;axemaster@zju.edu.cn
About author:
XU Jiuling was born in 1990. He received his B.E. degree in communication engineering from Zhejiang University of Technology. He is a member of the Micro-Satellite Research Center, Zhejiang University. His research interests include micro transponder, inter-satellite ranging and time synchronization. E-mail: Supported by:
Jiuling XU, Chaojie ZHANG, Chunhui WANG, Xiaojun JIN. Approach to inter-satellite time synchronization for micro-satellite cluster[J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 805-815.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | FROST C, AGASID E. Small spacecraft technology state of the art. NASA Technical Report TP-2014-216648/REV1, NASA Ames Research Center, 2014. |
2 | MATHIEU C, WEIGEL A L. Assessing the flexibility provided by fractionated spacecraft. Proc. of AIAA SPACE Forum, 2005, 1: 1-12. |
3 |
POGHOSYAN A, GOLKAR A. CubeSat evolution: analyzing CubeSat capabilities for conducting science missions. Progress in Aerospace Sciences, 2017, 88, 59- 83.
doi: 10.1016/j.paerosci.2016.11.002 |
4 |
GILL E, SUNDARAMOORTHY P, BOUWMEESTER J, et al. Formation flying within a constellation of nano-satellites: the QB50 mission. Acta Astronautica, 2013, 82 (1): 110- 117.
doi: 10.1016/j.actaastro.2012.04.029 |
5 | MCCORMICK D, BARRETT B, BURNSIDECLAPP M. Analyzing fractionated satellite architectures using RAFTIMATE: a Boeing tool for value-centric design. Proc. of AIAA SPACE Conference & Exposition, 2013, 6767: 1-6. |
6 | D'ERRICO M. Distributed space missions for earth system monitoring. New York: Microcosm Press and Springer, 2013. |
7 |
SHAW G B, MILLER D W, HASTINGS D E. Generalized characteristics of communication, sensing, and navigation satellite systems. Journal of Spacecraft and Rockets, 2000, 37 (6): 801- 811.
doi: 10.2514/2.3638 |
8 |
CELANDRONI N, FERRO E, GOTTA A, et al. On the applicability of reliable transport protocols in satellite delay tolerant and disruptive networks. International Journal of Satellite Communications & Networking, 2014, 32 (2): 141- 161.
doi: 10.1002/sat.1031 |
9 |
WANG C, TANG J H, CHENG X H, et al. Distributed cooperative ask planning algorithm for multiple satellites in delayed communication environment. Journal of Systems Engineering and Electronics, 2016, 27 (3): 619- 633.
doi: 10.1109/JSEE.2016.00066 |
10 | RADHAKRISHNAN R, EDMONSON W W, et al. Optimal multiple access protocol for inter-satellite communication in small satellite system. Proc. of 4s Small Satellite Systems and Services Symposium, 2014: 1-15. |
11 | TAPLEY B D, BETTADPUR S, WATKINS M, et al. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 2004, 31 (9) |
12 | BAGUIO M, TEACHERS G M. Amazing GRACE: NASA's gravity recovery and climate experiment. Proc. of Lunar and Planetary Science Conference, 2008: 18-22. |
13 | ORR N G, EYER J K, LAROUCHE B P, et al. Precision formation flight: The Can X-4 and Can X -5 Dual Nanosatellite Mission. ESA Special Publication, 2008, 1- 10. |
14 |
LANDGRAF M, MESTREAU-GARREAU A. Formation flying and mission design for Proba-3. Acta Astronautica, 2013, 82 (1): 137- 145.
doi: 10.1016/j.actaastro.2012.03.028 |
15 |
LLORENTE J S, AGENJO A, CARRASCOSA C, et al. PROBA-3: Precise formation flying demonstration mission. Acta Astronautica, 2013, 82 (1): 38- 46.
doi: 10.1016/j.actaastro.2012.05.029 |
16 |
GILL E, MONTENBRUCK O, D'AMICO S. Autonomous formation flying for the PRISMA mission. Journal of Spacecraft and Rockets, 2007, 44 (3): 671- 681.
doi: 10.2514/1.23015 |
17 |
ARDAENS J S, KAHLE R, SCHULZE D. In-flight performance validation of the TanDEM-X autonomous formation flying system. International Journal of Space Science and Engineering, 2014, 2 (2): 157- 170.
doi: 10.1504/IJSPACESE.2014.060596 |
18 | PITZ W, MILLER D. The TerraSAR-X satellite. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48(2): 615-622. |
19 |
ZHANG H, GURFIL P. Distributed control for satellite cluster flight under different communication topologies. Journal of Guidance Control & Dynamics, 2015, 39 (3): 1- 11.
doi: 10.2514/1.G001355 |
20 |
RADHAKRISHNAN R, EDMONSON W W, AFGHAH F, et al. Survey of inter-satellite communication for small satellite systems: physical layer to network layer view. IEEE Communications Surveys & Tutorials, 2016, 18 (4): 2442- 2473.
doi: 10.1109/COMST.2016.2564990 |
21 | KAPLAN E D, HEGARTY C J. Understanding GPS: Principles and Applications. London: Artech House Inc., 2nd ed 2006. |
22 | TAYLOR J, BARNES E. GPS current signal-in-space navigation performance. Proc. of the National Technical Meeting of the Institute of Navigation, 2005: 385-393. |
23 | BERTIGER W, BAR-SEVER Y, DESAI S, et al. GRACE: millimeters and microns in orbit. Gdgps Net, 2002, 2022- 2029. |
24 | PARK R, KONOPLIV A, YUAN D N, et al. High-resolution lunar gravity from the gravity recovery and interior laboratory mission. Proc. of the 23rd AAS/AIAA Spaceflight Mechanics Meeting, paper AAS. 13-272. |
25 | KLIPSTEIN W M, ARNOLD B W, ENZER D G, et al. The lunar gravity ranging system for the Gravity Recovery and Interior Laboratory (GRAIL) mission. Space Science Reviews, 2013, 178 (1): 57- 76. |
26 | DUNN C, BERTIGER W, FRANKLIN G, et al. The Instrument on NASA's GRACE mission: augmentation of GPS to achieve unprecedented gravity field measurements. Proc. of the International Technical Meeting of the Satellite Division of the Institute of Navigation, 2002: 724-730. |
27 |
ASMAR S W, KONOPLIV A S, WATKINS M M, et al. The scientific measurement system of the Gravity Recovery and Interior Laboratory (GRAIL) mission. Space Science Reviews, 2013, 178 (1): 25- 55.
doi: 10.1007/s11214-013-9962-0 |
28 | HUANG F, LU X, WU H, et al. Algorithm of intersatellite dynamic two-way time transfer based on GEO satellite. Proc. of the IEEE International Frequency Control Symposium Joint with the European Frequency and Time Forum, 2009: 688-691. |
29 | HUANG Y J, TSENG W H, LIN S Y, et al. Introduction of software-defined receivers in two-way satellite time and frequency transfer. Proc. of the IEEE International Frequency Control Symposium, 2016: 1-26. |
30 | YAO J, SKAKUN I, JIANG Z, et al. Comparison of two continuous GPS carrier-phase time transfer techniques. Proc. of the IEEE Frequency Control Symposium & the European Frequency and Time Forum, 2015: 655-661. |
31 | DACH R, HUGENTOBLER U, SCHILDKNECHT T, et al. Precise continuous time and frequency transfer using GPS carrier phase. Proc. of the IEEE International Frequency Control Symposium and Exposition, 2006: 329-336. |
32 | XU P P, ZHANG C J, LOU Y N, et al. FPGA-based all-digital clock generation method. Journal of Zhejiang University (Engineering Science), 2017, (12): 2341- 2347. |
33 |
LOU Y N, JIN Z H, ZHANG C J. A method of full digital clock generation with adjustable frequency and phase. Applied Mechanics & Materials, 2014, 599/601, 703- 706.
doi: 10.4028/www.scientific.net/AMM.599-601.703 |
34 | VANKKA J, HALONEN K. Spur reduction techniques in sine output direct digital synthesizer. Digital Synthesizers and Transmitters for Software Radio, 2005, 113- 137. |
35 | XU X, LIU H, TAN W. Parameters design of 1.25GHz low jitter charge pump PLL. Proc. of the IEEE International Conference on Electric Information and Control Engineering, 2011: 3418-3421. |
36 |
LOU Y N, JIN Z H, ZHANG C J. A method of full digital clock generation with adjustable frequency and phase. Journal of Systems Engineering and Electronics, 2014, 25 (6): 949- 958.
doi: 10.1109/JSEE.2014.00109 |
37 | GARDNER F M. Phaselock Techniques. New York: Wiley, 3rd ed 2005. |
38 | BETZ J, KOLODZIEJSKI K. Extended theory of early-late code tracking for a band limited GPS receiver. Journal of the Institute of Navigation, 2000, 47 (3): 211- 226. |
39 |
HUQUE A, STENSBY J. An analytical approximation for the pull-out frequency of a PLL employing a sinusoidal phase detector. ETRI Journal, 2013, 35 (2): 218- 225.
doi: 10.4218/etrij.13.0112.0166 |
40 | STENSBY J. An approximation of the pull-out frequency parameter in a second-order PLL. Proc. of the 38th Southeastern Symposium on System Theory, 2006: 75-79. |
41 | MAHESHWARAPPA M R, BRIDGES C P. Software defined radios for small satellites. Proc. of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2014: 172-179. |
42 |
ZHANG H, XU L, JIAN Y, et al. A 2-step GPS carrier tracking loop for urban vehicle applications. Journal of Systems Engineering and Electronics, 2017, 28 (5): 817- 826.
doi: 10.21629/JSEE.2017.05.01 |
[1] | Yaowei ZHU, Zhaobin XU, Xiaojun JIN, Xiaoxu GUO, Zhonghe JIN. Integrated method for measuring distance and time difference between small satellites [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 596-606. |
[2] | Huang Yulin, Yang Jianyu, Wu Junjie & Xiong Jintao. Precise time frequency synchronization technology for bistatic radar [J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 929-933. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||