系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (8): 2738-2746.doi: 10.12305/j.issn.1001-506X.2024.08.21
• 系统工程 • 上一篇
方伟1,2, 张婷婷1,*, 谭凯文1, 汤淼1
收稿日期:
2022-07-07
出版日期:
2024-07-25
发布日期:
2024-08-07
通讯作者:
张婷婷
作者简介:
方伟(1977—), 男, 教授, 博士, 主要研究方向为装备仿真、虚拟现实Wei FANG1,2, Tingting ZHANG1,*, Kaiwen TAN1, Miao TANG1
Received:
2022-07-07
Online:
2024-07-25
Published:
2024-08-07
Contact:
Tingting ZHANG
摘要:
针对飞机在空战中采集的飞行参数数据成分复杂、标签存在缺失等问题, 提出一种基于生成式对抗网络(generative adversarial network, GAN)的半监督空战态势评估模型。首先根据各要素权重提取空战数据的主要影响因子, 随后进行差分化和窗口化处理, 利用差分方法将态势信息相对化为一维特征向量, 窗口化信息生成反映两架载机态势信息的特征矩阵, 并送入网络进行半监督训练。仿真结果表明, 该模型在样本标签缺失的情况下具有良好的态势分析效果, 对于4种态势的识别准确率达90.91%。
中图分类号:
方伟, 张婷婷, 谭凯文, 汤淼. 基于差分窗口生成式对抗网络的空战态势评估[J]. 系统工程与电子技术, 2024, 46(8): 2738-2746.
Wei FANG, Tingting ZHANG, Kaiwen TAN, Miao TANG. Air combat situation assessment based on differential window generative adversarial network[J]. Systems Engineering and Electronics, 2024, 46(8): 2738-2746.
表2
判别器网络参数"
层 | 输出尺寸 | 层 | 输出尺寸 | |
input_1 | (1, 80) | batch _2 | (1, 4, 128) | |
reshape | (1, 8, 10) | Activation_2 | (1, 4, 128) | |
Conv2d | (1, 4, 64) | Conv2d_4 | (1, 4, 128) | |
Conv2d_1 | (1, 4, 128) | batch _3 | (1, 4, 128) | |
batch | (1, 4, 128) | Activation_3 | (1, 4, 128) | |
activation | (1, 4, 128) | Flatten | (512) | |
Conv2d_2 | (1, 4, 128) | dense | (1 024) | |
batch _1 | (1, 4, 128) | dense_1 | (512) | |
Activation_1 | (1, 4, 128) | dense_2 | (64) | |
Conv2d_3 | (1, 4, 128) | Softmax/Sigmoid | 4/1 |
表3
生成器网络参数"
层 | 输出尺寸 | 层 | 输出尺寸 | |
input_3 | (1, 100) | Leaky _2 | (2, 256, 128) | |
Dense_8 | (1, 8 192) | batch _10 | (2, 256, 128) | |
Reshape_2 | (1, 128, 64) | Conv2d_13 | (2, 256, 64) | |
Conv2d_10 | (1, 128, 64) | Leaky_3 | (2, 256, 64) | |
Leaky_re_lu | (1, 128, 64) | batch _11 | (2, 256, 64) | |
batch _8 | (1, 128, 64) | Flatten_3 | (32 768) | |
Up_sam2d | (2, 256, 64) | dense_9 | (1 024) | |
Conv2d_11 | (2, 256, 128) | dense_10 | (512) | |
Leaky _1 | (2, 256, 128) | dense_11 | (256) | |
batch _9 | (2, 256, 128) | dense_12 | (80) | |
Conv2d_12 | (2, 256, 128) | Reshape_3 | (1, 80) |
1 |
谷玉荣, 黄耀雄, 高艳, 等. 基于K-Means聚类算法的空中态势威胁挖掘[J]. 火力与指挥控制, 2019, 44 (4): 92- 96.
doi: 10.3969/j.issn.1002-0640.2019.04.019 |
GU Y R , HUANG Y X , GAO Y , et al. Aerial posture threat mining based on K-Means clustering algorithm[J]. Fire Control and Command Control, 2019, 44 (4): 92- 96.
doi: 10.3969/j.issn.1002-0640.2019.04.019 |
|
2 |
游航航, 余敏建, 韩其松, 等. 基于攻击区的空战指挥引导态势评估[J]. 兵器装备工程学报, 2019, 40 (12): 29- 34.
doi: 10.11809/bqzbgcxb2019.12.007 |
YOU H H , YU M J , HAN Q S , et al. Air combat command based on the attack zone guides the posture assessment[J]. Journal of Weapons and Equipment Engineering, 2019, 40 (12): 29- 34.
doi: 10.11809/bqzbgcxb2019.12.007 |
|
3 | 胡涛, 王栋, 姜龙亭, 等. 空战智能态势评估技术研究与展望[J]. 军事文摘, 2020, (5): 19- 22. |
HU T , WANG D , JIANG L T , et al. Research and prospect of intelligent posture assessment technology for air comba[J]. Mili- tary Digest Journal, 2020, (5): 19- 22. | |
4 |
史振庆, 梁晓龙, 张佳强, 等. 基于导弹攻击区的空战态势评估[J]. 火力与指挥控制, 2018, 43 (9): 89-93, 98.
doi: 10.3969/j.issn.1002-0640.2018.09.019 |
SHI Z Q , LIANG X L , ZHANG J Q , et al. Assessment of the air combat posture based on the missile attack zone[J]. Fire Control and Command Control, 2018, 43 (9): 89-93, 98.
doi: 10.3969/j.issn.1002-0640.2018.09.019 |
|
5 | KUMAR S, TRIPATHI B K. Modelling of threat evaluation for dynamic targets using Bayesian network approach[C]//Proc. of the International Conference on Emerging Trends in Engineering, Science and Tecnology, 2016: 1268-1275. |
6 | 肖亮, 黄俊, 徐钟书. 基于空域划分的超视距空战态势威胁评估[J]. 北京航空航天大学学报, 2013, 39 (10): 1309- 1313. |
XIAO L , HUANG J , XU Z S . An assessment of the threat of an over-the-horizon air combat posture based on the division of airspace[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39 (10): 1309- 1313. | |
7 |
程天发, 葛泉波, 陈哨东, 等. 基于改进空战威胁评估模型的权重计算方法比较[J]. 火力与指挥控制, 2016, 41 (1): 32- 36.
doi: 10.3969/j.issn.1002-0640.2016.01.008 |
CHENG T F , GE Q B , CHEN S D , et al. Comparison of weight calculation methods based on improved air combat threat assessment model[J]. Fire Control and Command Control, 2016, 41 (1): 32- 36.
doi: 10.3969/j.issn.1002-0640.2016.01.008 |
|
8 | PATIL K, NAGWANI N K, TRIPATHI S. A parametric study of partitioning and density based clustering techniques for boxplot generation[C]//Proc. of the 3rd International Conference for Convergence in Technology, 2018. |
9 | SUN G L, LANG F, YANG M M, et al. Application protocols identification using non-parametric estimation method[C]//Proc. of the 6th International Forum on Strategic Technology, 2011: 765-768. |
10 |
XU X M , YANG R N , FU Y . Situation assessment for air combat based on novel semi-supervised naive Bayes[J]. Journal of Systems Engineering and Electronics, 2018, 29 (4): 768- 779.
doi: 10.21629/JSEE.2018.04.11 |
11 | JI H, HAN Q, LI X Y, et al. Air combat situation assessment based on improved cloud model theory[C]//Proc. of the 8th Joint International Information Technology and Artificial Intelligence Conference, 2019: 754-758. |
12 | LI F, LIU J B, ZHANG F H, et al. Situation assessment for beyond-visual-range air combat situation assessment based on dynamic Bayesian network[C]//Proc. of the 25th Chinese Control and Decision Conference, 2013: 591-594. |
13 | ZHAO K X, HUANG C Q. Air combat situation assessment for UAV based on improved decision tree[C]//Proc. of the Chinese Control and Decision Conference, 2018: 1772-1776. |
14 | XU X M, YANG R N, YANG Y. Threat assessment in air combat based on ELM neural network[C]//Proc. of the International Conference on Artificial Intelligence and Computer App- lications, 2019: 114-120. |
15 | LU C G, ZHOU Z L, LIU H Q, et al. Situation assessment of far-distance attack air combat based on mixed dynamic Bayesian networks[C]//Proc. of the 37th Chinese Control Conference, 2018: 4569-4574. |
16 | 孙永芹, 世文荣, 彭海军, 等. 基于改进非参量法的现代空战威胁评估研究[J]. 火控雷达技术, 2013, 42 (3): 28- 33. |
SUN Y Q , SHI W Y , PENG H J , et al. Modern air combat threat assessment research based on improved non-parametric method[J]. Journal of Fire Control Radar Technology, 2013, 42 (3): 28- 33. | |
17 | ARORA D, GARG M, GUPTA M. Diving deep in deep convolutional neural network[C]//Proc. of the 2nd International Conference on Advances in Computing, Communication Control and Networking, 2020: 749-751. |
18 | ÖZMEN E, õOGUN F, ALTIPARMAK F. Classification of imbalanced dataset using generative adversarial nets[C]//Proc. of the 28th Signal Processing and Communications Applications Conference, 2020. |
19 | TAHMID M, ALAM S, AKRAM M K. Comparative analysis of generative adversarial networks and their variants[C]//Proc. of the 23rd International Conference on Computer and Information Technology, 2020. |
20 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]//Proc. of the Neural Information Process System, 2014: 2672-2680. |
21 | LI X Y, ZHANG Z K. The comparison between conditional generative adversarial nets and deep convolutional generative adversarial network, and its GUI-related application[C]//Proc. of the 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering, 2021: 601-609. |
22 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. [2022-06-20]. https://arxiv.org/pdf/1511.06434.pdf. |
23 | 韩博, 周一鹏, 钱程, 等. 基于深度卷积生成对抗神经网络的空战态势评估[C]//2021年无人系统高峰论坛, 2021: 43-49. |
HAN B, ZHOU Y P, QIAN C, et al. Air combat posture assessment based on deep convolutional generation of adversarial neural networks[C]//Proc. of the 2021 Unmanned Systems Summit Forum, 2021: 43-49. | |
24 |
YAN P Y , HE F , YANG Y J , et al. Semi-supervised representation learning for remote sensing image classification based on generative adversarial networks[J]. IEEE Access, 2020, 8, 54135- 54144.
doi: 10.1109/ACCESS.2020.2981358 |
25 | 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43 (3): 321- 332. |
WANG K F , GOU C , DUAN Y J , et al. Research progress and prospect of generative adversarial network GAN[J]. Journal of Automation, 2017, 43 (3): 321- 332. | |
26 | 林懿伦, 戴星原, 李力, 等. 人工智能研究的新前线: 生成式对抗网络[J]. 自动化学报, 2018, 44 (5): 775- 792. |
LIN Y L , DAI X Y , LI L , et al. A new frontier in AI research: generative adversarial networks[J]. Journal of Automation, 2018, 44 (5): 775- 792. | |
27 | 王万良, 李卓蓉. 生成式对抗网络研究进展[J]. 通信学报, 2018, 39 (2): 135- 148. |
WANG W L , LI Z R . Research progress on generative adversarial networks[J]. Journal of Communications, 2018, 39 (2): 135- 148. | |
28 |
TAN K W , YAN W J , ZHANG L M , et al. Semi-supervised specific emitter identification based on bispectrum feature extraction CGAN in multiple communication scenarios[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (1): 292- 310.
doi: 10.1109/TAES.2022.3184619 |
29 | SUN S L, HUANG R Q. An adaptive K-nearest neighbor algorithm[C]//Proc. of the 7th International Conference on Fuzzy Systems and Knowledge Discovery, 2010: 91-94. |
30 | LU C G, ZHOU Z L, LIU H Q, et al. Situation assessment of far-distance attack air combat based on mixed dynamic Bayesian networks[C]//Proc. of the 37th Chinese Control Conference, 2018: 4569-4574. |
[1] | 盛磊, 时满红, 亓迎川, 李浩, 庞明军. 基于态势演化博弈的无人机集群动态攻防[J]. 系统工程与电子技术, 2023, 45(8): 2332-2342. |
[2] | 邓喆, 雷菁, 孙承哲. 跳频信号盲检测的半监督干扰对消方法[J]. 系统工程与电子技术, 2023, 45(7): 2236-2248. |
[3] | 秦博伟, 蒋磊, 许华, 齐子森. 基于残差生成对抗网络的调制识别算法[J]. 系统工程与电子技术, 2022, 44(6): 2019-2026. |
[4] | 马骏, 杨镜宇, 吴曦. 基于预聚类主动半监督的作战体系效能评估[J]. 系统工程与电子技术, 2022, 44(6): 1889-1896. |
[5] | 李昂, 聂党民, 温祥西, 王泽坤, 杨诚修. 基于相依网络和SVM的管制系统运行态势评估[J]. 系统工程与电子技术, 2021, 43(5): 1287-1294. |
[6] | 符颖, 王星, 周一鹏, 范翔宇. 基于改进半监督朴素贝叶斯的LPI雷达信号识别[J]. 系统工程与电子技术, 2017, 39(11): 2463-2469. |
[7] | 毛盾, 邢昌风, 黎铁冰, 黄傲林. 基于图的半监督目标跟踪[J]. 系统工程与电子技术, 2016, 38(2): 450-456. |
[8] | 顾佼佼,刘卫华,姜文志. 基于攻击区和杀伤概率的视距内空战态势评估[J]. 系统工程与电子技术, 2015, 37(6): 1306-1312. |
[9] | 田淞1,2, 宋建社1, 张雄美1, 任伟龙1. KM-SVM法的SAR图像无监督变化检测[J]. 系统工程与电子技术, 2015, 37(5): 1042-1046. |
[10] | 顾佼佼,赵建军,徐海峰,李天梅. 基于SPA及PSO的超视距空战态势评估[J]. 系统工程与电子技术, 2014, 36(4): 691-696. |
[11] | 郑寇全,雷英杰,王睿,邢雅琼. 基于IFTBN的不确定性时间推理方法[J]. 系统工程与电子技术, 2014, 36(10): 1994-1999. |
[12] | 胡云安,刘振,史建国. 态势评估的变结构区间概率动态贝叶斯网络方法[J]. 系统工程与电子技术, 2013, 35(9): 1891-1897. |
[13] | 张媛, 刘文彪, 张立民. 基于主客观综合赋权的CGF态势评估建模研究[J]. Journal of Systems Engineering and Electronics, 2013, 35(1): 85-90. |
[14] | 李闯,端木京顺,雷英杰,高建国. 基于认知图和直觉模糊推理的态势评估方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2064-2068. |
[15] | 黄长强,胡杰,蔡佳. 无人战斗机态势评估变精度粗集决策方法[J]. Journal of Systems Engineering and Electronics, 2011, 33(5): 1045-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||