系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (8): 2738-2746.doi: 10.12305/j.issn.1001-506X.2024.08.21

• 系统工程 • 上一篇    

基于差分窗口生成式对抗网络的空战态势评估

方伟1,2, 张婷婷1,*, 谭凯文1, 汤淼1   

  1. 1. 海军航空大学, 山东 烟台 264001
    2. 海战场信息感知与融合技术国家级实验教学中心, 山东 烟台 264001
  • 收稿日期:2022-07-07 出版日期:2024-07-25 发布日期:2024-08-07
  • 通讯作者: 张婷婷
  • 作者简介:方伟(1977—), 男, 教授, 博士, 主要研究方向为装备仿真、虚拟现实
    张婷婷(1994—), 女, 硕士研究生, 主要研究方向为信息系统仿真、智能处理
    谭凯文(1998—), 男, 硕士研究生, 主要研究方向为特定辐射源识别、生成式对抗网络、频谱感知
    汤淼(1993—), 男, 硕士研究生, 主要研究方向为信息系统仿真、智能处理

Air combat situation assessment based on differential window generative adversarial network

Wei FANG1,2, Tingting ZHANG1,*, Kaiwen TAN1, Miao TANG1   

  1. 1. Naval Aviation University, Yantai 264001, China
    2. National Experimental Teaching Center of Marine Battlefield Information Perception and Fusion Technology, Yantai 264001, China
  • Received:2022-07-07 Online:2024-07-25 Published:2024-08-07
  • Contact: Tingting ZHANG

摘要:

针对飞机在空战中采集的飞行参数数据成分复杂、标签存在缺失等问题, 提出一种基于生成式对抗网络(generative adversarial network, GAN)的半监督空战态势评估模型。首先根据各要素权重提取空战数据的主要影响因子, 随后进行差分化和窗口化处理, 利用差分方法将态势信息相对化为一维特征向量, 窗口化信息生成反映两架载机态势信息的特征矩阵, 并送入网络进行半监督训练。仿真结果表明, 该模型在样本标签缺失的情况下具有良好的态势分析效果, 对于4种态势的识别准确率达90.91%。

关键词: 态势评估, 半监督学习, 差分窗口, 生成式对抗网络

Abstract:

Aiming at the complex composition and missing tags of the flight reference data collected by the aircraft during the air combat, a semi-supervised air combat situation assessment model is proposed based on the generative adversarial network (GAN). Firstly, the main influencing factors of the air combat data are extracted according to the weights of each element, then the differencing and windowing processing are carried out. The situation information is relativeized into a one-dimensional feature vector using the differential method. The windowing information generates a feature matrix reflecting the situation information of the two carrier aircrafts, which is sent to the network for semi-supervised training. Simulation results show that the model has a good situation analysis effect in the case of sample labels missing, and the recognition accuracy of the four situations is 90.91%.

Key words: situation assessment, semi-supervised learning, differential window, generative adversarial network (GAN)

中图分类号: