1 |
JEB S O, TANNEN V Z. Robust, practical adaptive control for launch vehicles[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2012.
|
2 |
HANSON J, CHARLES H. Learning about Ares I from Monte Carlo simulation[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2008.
|
3 |
BRIAN D L, RATNESHWAR J. Launch vehicle ascent flight control augmentation via a hybrid adaptive controller[C]//Proc. of the AIAA Guidance, Navigation and Control Conference and Exhibit, 2008.
|
4 |
TANNEN S V, ERIC T G, JOHN H W. In-flight suppression of an unstable F/A-18 structural mode using the space launch system adaptive augmenting control system[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2015.
|
5 |
TANNEN S V, ERIC T G, JOHN H W. Adaptive augmenting control flight characterization experiment on AN F/A-18[C]//Proc. of the American Astronautical Society Guidance, Navigation, and Control Conference, 2014.
|
6 |
CORNELIUS J D , TANNEN S V , CURTIS E H , et al. Flight testing of the space launch system (SLS) adaptive augmenting control (AAC) algorithm on an F/A-18[J]. USA: NASA, 2014,
|
7 |
MILLER C J. Nonlinear dynamic inversion baseline control law: flight-test results for the full-scale advanced systems testbed F/A-18 airplane[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2011.
|
8 |
CURT H, CHRIS M, JOHN H W. Launch vehicle manual steering with adaptive augmenting control: in-flight evaluations of adverse interactions using a piloted aircraft[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2015.
|
9 |
LUKE M, JING P, PAUL R. Demonstration of the space launch system augmenting adaptive control algorithm on a quad-rotor[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2018.
|
10 |
DIEGO N T, ANDRES M, SAMIR B, et al. Joint robust structured design of VEGA launcher's rigid-body controller and bending filter[C]//Proc. of the 69th International Astronautical Congress, 2018.
|
11 |
DIEGO N T, ANDRES M, SAMIR B, et al. Robust-control-based design and comparison of an adaptive controller for the VEGA launcher[C]//Proc. of the AIAA Scitech Forum, 2019.
|
12 |
JING P, PAUL R. Demonstration of the space launch system augmenting adaptive control algorithm on pole-cart platform[C]// Proc. of the AIAA Guidance, Navigation, and Control Conference, 2018.
|
13 |
BRINDA V , ARJUN N , SMRITHI U , et al. Classical adaptive augmentation control for a typical second generation launch vehicle[J]. IFAC PapersOnLine, 2016, 49 (1): 670- 675.
doi: 10.1016/j.ifacol.2016.03.133
|
14 |
TANNEN V, ZHU J J, ADAMI T. Stability assessment and tuning of an adaptively augmented classical controller for launch vehicle flight control[C]//Proc. of the American Astronautical Society Guidance, Navigation, and Control Conference, 2014.
|
15 |
SUSAN A F, MARK J B, ALAN D W. Augmented adaptive control of a wind turbine in the presence of structural modes[C]// Proc. of the American Control Conference, 2010.
|
16 |
JOHN H W, JEB S O, TANNEN S V. Space launch system implementation of adaptive augmenting control[C]//Proc. of the American Astronautical Society Guidance, Navigation, and Control Conference, 2014.
|
17 |
JEB S O, JOHN H W, TANNEN S V, et al. Space launch system ascent flight control design[C]//Proc. of the AAS Guidance, Navigation, and Control Conference, 2014.
|
18 |
TROTTA D , ZAVOLI A , MATTEIS G D , et al. Tracking filter integration in the adaptive augmenting controller of a launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 2021, 44 (12): 2327- 2336.
doi: 10.2514/1.G006007
|
19 |
JEB S O. Modeling and test of space launch system core stage thrust vector control[C]//Proc. of the Aerospace Control and Guidance Systems Committee Meeting, 2016.
|
20 |
陈志勇. 柔性关节空间双臂机器人奇异摄动增广鲁棒自适应PD复合控制[J]. 振动与冲击, 2015, 34 (16): 79- 84.
|
|
CHEN Z Y . Singular perturbation augmented robust adaptive PD composite control for flexible-joint dual-arm space robot[J]. Journal of Vibration and Shock, 2015, 34 (16): 79- 84.
|
21 |
陈力, 刘延柱. 参数不确定空间机械臂系统的增广自适应控制[J]. 航空学报, 2000, 21 (2): 150- 154.
doi: 10.3321/j.issn:1000-6893.2000.02.012
|
|
CHEN L , LIU Y Z . Adaptive control of space-based manipulator with uncertain parameters[J]. Acta Aeronautica et Astronautica Sinca, 2000, 21 (2): 150- 154.
doi: 10.3321/j.issn:1000-6893.2000.02.012
|
22 |
洪昭斌, 陈力. 双臂空间机器人相对载体运动的增广自适应控制方法[J]. 力学季刊, 2007, 28 (3): 375- 381.
doi: 10.3969/j.issn.0254-0053.2007.03.004
|
|
HONG Z B , CHEN L . Adaptive control of spacecraft referenced end points motion of free floating dual arm space robot system[J]. Chinese Quarterly of Mechanics, 2007, 28 (3): 375- 381.
doi: 10.3969/j.issn.0254-0053.2007.03.004
|
23 |
高军礼, 邓则名, 李芳. 可调增益的模型参考自适应控制及其仿真[J]. 信阳师范学院学报(自然科学版), 2001, 14 (3): 341- 343.
doi: 10.3969/j.issn.1003-0972.2001.03.026
|
|
GAO J L , DENG Z M , LI F . Gain-adjustable model reference adaptive control and simulation[J]. Journal of Xinyang Teachers College (Natural Science Edition), 2001, 14 (3): 341- 343.
doi: 10.3969/j.issn.1003-0972.2001.03.026
|
24 |
肖冰, 胡庆雷, 马广富. 挠性卫星姿态跟踪自适应L2增益控制[J]. 控制理论与应用, 2011, 28 (1): 101- 107.
|
|
XIAO B , HU Q L , MA G F . Adaptive L2-gain controller for flexible spacecraft attitude tracking[J]. Control Theory & Applications, 2011, 28 (1): 101- 107.
|
25 |
张建明, 王宁, 王树青. PID自适应调整增益的神经元非模型控制[J]. 机电工程, 1999, 5, 72- 73.
|
|
ZHANG J M , WANG N , WANG S Q . A neuron model-free controller with the adaptive gain regulated by the PID algorithm[J]. Mechanical and Electrical Engineering, 1999, 5, 72- 73.
|
26 |
韦常柱, 琚啸哲, 何飞毅, 等. 运载火箭主动段自适应增广控制[J]. 宇航学报, 2019, 40 (8): 918- 927.
|
|
WEI C Z , JU X Z , HE F Y . Ascent flight adaptive augmenting control for launch vehicles[J]. Journal of Astronautics, 2019, 40 (8): 918- 927.
|
27 |
ZHANG L, WEI C Z, JING L. Heavy lift launch vehicle technology of adaptive augmented fault tolerant control[C]//Proc. of the Chinese Guidance, Navigation and Control Conference, 2016.
|
28 |
崔乃刚, 陈诚, 潘哲, 等. 运载火箭自适应增广抗扰减载控制[J]. 导弹与航天运载技术, 2017, 6, 1- 6.
|
|
CUI N G , CHEN C , PAN Z , et al. Adaptive augmented disturbance rejection and load-relief control for launch vehicle[J]. Missiles and Space Vehicles, 2017, 6, 1- 6.
|
29 |
何飞毅. 重型运载火箭模型参考自适应增广控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
HE F Y. Research on model reference adaptive augmenting control of heavy lift launch vehicle[D]. Harbin: Harbin Institute of Technology, 2018.
|
30 |
徐世昊. 运载火箭自适应增广抗扰控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
XU S H. Resaerch on adaptive augmenting disturbance rejection control for launch vehicle[D]. Harbin: Harbin Institute of Technology, 2020.
|
31 |
张晋. 固体运载器自适应增广抗扰姿态控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
ZHANG J. Adaptive augmented disturbance rejection attitude control method for solid launch vehicle[D]. Harbin: Harbin Institute of Technology, 2020.
|
32 |
祝大利. 运载火箭传感器布局与自适应增广控制研究[D]. 大连: 大连理工大学, 2020.
|
|
ZHU D L. Research on sensor layout and adaptive augmenting control of a launch vehicle[D]. Dalian: Dalian University of Technology, 2020.
|
33 |
DOMENICO T , ALESSANDRO Z , GUIDO D M . Optimal tuning of adaptive augmenting controller for launch vehicles in atmospheric flight[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (11): 2133- 2140.
|
34 |
TANNEN S V, MICHAEL R H, JOHN H W. Evaluating the stability of NASA's space launch system with adaptive augmenting control[C]//Proc. of the 10th International ESA Conference on Guidance, Navigation and Control Systems, 2017.
|
35 |
MARK J B, TANNEN S V, MICHAEL R H. Nonlinear(Lyapunov) stability of the space launch system flight control system with adaptive augmenting control[C]//Proc. of the AIAA Scitech Forum, 2019.
|
36 |
ANGELOV J, YOON Y E, JOHNSON E N, et al. Analytical derivation of the sinusoidal input describing function for adaptive augmenting control algorithms[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2018.
|