1 |
MARCIA L B , ELSA M P H , KAI G . More effective prognostics with elbow point detection and deep learning[J]. Mechanical Systems and Signal Processing, 2021, 146, 106987.
doi: 10.1016/j.ymssp.2020.106987
|
2 |
MENG M , ZHU M . Deep-convolution-based LSTM network for remining useful life prediction[J]. IEEE Trans.on Industrial Informatics, 2021, 17 (3): 1658- 1667.
doi: 10.1109/TII.2020.2991796
|
3 |
SHE D M , JIA M P . A BiGRU method for remaining useful life prediction of machinery[J]. Measurement, 2021, 167, 108277.
doi: 10.1016/j.measurement.2020.108277
|
4 |
陆宁云, 陈闯, 姜斌, 等. 复杂系统维护策略最新研究进展: 从视情维护到预测性维护[J]. 自动化学报, 2021, 47 (1): 1- 17.
|
|
LU N Y , CHEN C , JIANG B , et al. Latest progress on maintenance strategy of complex system: from condition-based maintenance to predictive maintenance[J]. Acta Automatica Sinca, 2021, 47 (1): 1- 17.
|
5 |
LIU Q M , DONG M , LYU W Y , et al. Manufacturing system maintenance based on dynamic programming model with prognostics information[J]. Journal of Intelligent Manufacturing, 2019, 30 (3): 1155- 1173.
doi: 10.1007/s10845-017-1314-6
|
6 |
ZHU J , CHEN N , SHEN C Q . A new data-driven transferable remaining useful life prediction approach for bearing under diffe-rent working conditions[J]. Mechanical Systems and Signal Processing, 2020, 139, 106602.
doi: 10.1016/j.ymssp.2019.106602
|
7 |
WANG B , LEI Y G , LI N P , et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Trans.on Reliability, 2020, 69 (1): 401- 412.
doi: 10.1109/TR.2018.2882682
|
8 |
TIAN Q P , WANG H L . An ensemble learning and RUL prediction method based on bearings degradation indicator construction[J]. Applied Sciences, 2020, 10 (1): 346- 368.
doi: 10.3390/app10010346
|
9 |
LOUKOPOULOS P , ZOLKIEWSKI G , BENNETT I , et al. Abrupt fault remaining useful life estimation using measurements from a reciprocating compressor valve failure[J]. Mechanical Systems and Signal Processing, 2019, 121 (2): 359- 372.
|
10 |
PARIS P C , ERDOGAN F . A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering, 1963, 85, 528- 533.
|
11 |
WANG J J , GAO R X , YUAN Z , et al. A joint particle filter and expectation maximization approach to machine condition prognosis[J]. Journal of Intelligent Manufacturing, 2019, 30 (2): 605- 621.
doi: 10.1007/s10845-016-1268-0
|
12 |
LEI Y G , LI N , GONTARZ S , et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Trans.on Reliability, 2016, 65 (3): 1314- 1326.
doi: 10.1109/TR.2016.2570568
|
13 |
LIAO L X . Discovering prognostic features using genetic programming in remaining useful life prediction[J]. IEEE Trans.on Industrial Electronics, 2014, 61 (5): 2464- 2472.
doi: 10.1109/TIE.2013.2270212
|
14 |
CHAN K S , ENRIGHT M P , MOODY J P , et al. Life prediction for turbopropulsion systems under dwell fatigue conditions[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134 (12)
doi: 10.1115/GT2012-69742
|
15 |
BARALDI P , MANGILI F , ZIO E . Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data[J]. Reliability Engineering and System Safety, 2013, 112, 94- 108.
doi: 10.1016/j.ress.2012.12.004
|
16 |
BARALDI P , MANGILI F , ZIO E . A Kalman filter-based ensemble approach with application to turbine creep prognostics[J]. IEEE Trans.on Reliability, 2012, 61 (3): 966- 977.
|
17 |
彭志凌, 张毅, 丁明军, 等. 某供弹系统高速传动机构磨损机理分析与预测模型[J]. 中北大学学报(自然科学版), 2018, 39 (2): 155- 158.
doi: 10.3969/j.issn.1673-3193.2018.02.008
|
|
PENG Z L , ZHANG Y , DING M J , et al. Analysis and prediction model of wear mechanism for high speed transmission mechanism of a missile system[J]. Journal of North University of China(Natural Science Edition), 2018, 39 (2): 155- 158.
doi: 10.3969/j.issn.1673-3193.2018.02.008
|
18 |
KATRIN S , PHILIPPE C C , REINALD B . Automatic selection of a representative trial from multiple measurements using Principle Component Analysis[J]. Journal of Biomechanics, 2012, 45 (3): 2306- 2309.
|
19 |
LI X Q , JIANG H K , XIONG X , et al. Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network[J]. Mechanism and Machine Theory, 2019, 133 (2): 229- 249.
|
20 |
孟文俊, 张四聪, 淡紫嫣, 等. 滚动轴承寿命动态预测新方法[J]. 振动、测试与诊断, 2019, 39 (3): 652- 658.
|
|
MENG W J , ZHANG S C , DAN Z Y , et al. Method of dynamic life prediction of rolling bearing[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39 (3): 652- 658.
|
21 |
杨柯, 范世东. 基于长短期记忆网络时序数据趋势预测及应用[J]. 推进技术, 2021, (3): 675- 682.
|
|
YANG K , FAN S D . Long short-term memory network based method and its application in time-series data trend prediction[J]. Journal Propulsion Technology, 2021, (3): 675- 682.
|
22 |
SINGH J , DARPE A K , SINGH H P , et al. Bearing damage assessment using Jensen-Renyi divergence based on EEMD[J]. Mechanical Systems and Signal Processing, 2017, 87 (2): 307- 339.
|
23 |
QIAN Y N , YAN R Q , GAO R X , et al. A multi-time scale approach to remaining useful life prediction in rolling bearing[J]. Mechanical Systems and Signal Processing, 2017, 83 (1): 549- 567.
|
24 |
SHAO H D , JIANG H K , LI X Q , et al. Rolling bearing fault detection using continuous deep belief network with locally linear embedding[J]. Computers in Industry, 2018, 96 (3): 27- 39.
|
25 |
ZHANG N , DING S F , ZHANG J , et al. An overview on restric-ted Boltzmann machines[J]. Neurocomputing, 2018, 275 (1): 1186- 1199.
|
26 |
LI C , SANCHEZ R V , ZURITA G , et al. Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis[J]. Neurocomputing, 2015, 168 (2): 119- 127.
|
27 |
LI C , SANCHEZ R V , ZURITA G , et al. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals[J]. Mechanical Systems and Signal Processing, 2016, 76 (2): 283- 293.
|
28 |
ZHANG L , GAO H L , WEN J , et al. A deep learning-based recognition method for degradation monitoring of ball screw with multi-sensor data fusion[J]. Microelectronics Reliability, 2017, 75, 215- 222.
|
29 |
NECTOX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests[C]//Proc. of the IEEE International Confe-rence on Prognostics and Health Management, 2012.
|
30 |
张钢, 田福庆, 佘博, 等. 一种基于特定频段信息熵和RBM的健康因子构建方法[J]. 振动与冲击, 2020, 39 (6): 147- 153.
|
|
ZHANG G , TIAN F Q , SHE B , et al. Health indicator construction method based on the information entropy of a specific frequency band and the RBM[J]. Journal of Vibration and Shock, 2020, 39 (6): 147- 153.
|