系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (8): 2555-2561.doi: 10.12305/j.issn.1001-506X.2023.08.30

• 制导、导航与控制 • 上一篇    下一篇

航向误差非线性预测的惯性行人导航零速修正算法

戴洪德, 马宇峰, 戴邵武, 郑百东, 张笑宇   

  1. 海军航空大学航空基础学院, 山东 烟台 264001
  • 收稿日期:2022-05-20 出版日期:2023-07-25 发布日期:2023-08-03
  • 通讯作者: 戴洪德
  • 作者简介:戴洪德 (1981—),男,教授,博士,主要研究方向为惯性导航、滤波估计、故障诊断、智能信息处理技术
    马宇峰 (1998—),男,硕士研究生,主要研究方向为惯性器件及其应用
    戴邵武 (1966—),男,教授,博士,主要研究方向为惯性器件、惯性导航
    郑百东 (1993—), 男,讲师,硕士,主要研究方向为飞行器综合导航技术
    张笑宇 (1997—),男,工程师,硕士,主要研究方向为惯性导航、行人惯性导航
  • 基金资助:
    国防科技项目基金(F062102009);山东省自然科学基金面上项目(ZR2017MF036);山东省高等学校青年创新团队项目(2020KJN003)

Zero velocity update algorithm for inertial pedestrian navigation based on nonlinear prediction of heading error

Hongde DAI, Yufeng MA, Shaowu DAI, Baidong ZHENG, Xiaoyu ZHANG   

  1. School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, China
  • Received:2022-05-20 Online:2023-07-25 Published:2023-08-03
  • Contact: Hongde DAI

摘要:

针对基于零速修正(zero velocity update, ZUPT)的行人导航算法无法对航向角进行观测导致航向角发散的问题,设计了一种基于ZUPT、零角速率修正和航向角误差非线性预测校正的惯性行人导航算法。首先通过广义似然比检测(generalized likelihood ratio test, GLRT)算法确定出零速区间;在检测到的零速区间内利用ZUPT算法构造速度误差观测量、利用零角速率修正(zero angular rate update, ZARU)算法构造角速率误差观测量,通过零速区间航向角误差观测模块构造航向角误差观测量, 在非零速区间对航向角误差进行非线性预测;再利用卡尔曼滤波对零速区间内的速度、角速率、位置和航向角误差进行估计,利用估计误差对惯性行人导航系统进行误差修正;通过实际行人导航系统验证,在复杂运动状态下导航轨迹误差平均值仅为0.43 m,只占总路程的0.35%。在长航时行走的情况下导航误差仅为1.25%里程。所提算法无需增设其他传感器,无需限制行人的运动轨迹,具有良好的工程应用价值。

关键词: 行人导航, 零速检测, 零速修正, 零角速率修正, 卡尔曼滤波

Abstract:

Aiming at the problem that the pedestrian navigation algorithm based on zero velocity update (ZUPT) cannot observe the heading angle, which leads to the divergence of the heading angle, an inertial pedestrian navigation algorithm based on ZUPT, zero angular rate update, and nonlinear prediction correction of heading angle error is designed. Firstly, the zero speed interval is determined by the algorithm of generalized likelihood ratio test (GLRT). In the detected zero speed range, the ZUPT algorithm is used to construct the velocity error observation, the zero angular rate update (ZARU) algorithm is used to construct the angular rate error observation, the heading angle error observation is constructed through the heading angle error observation module in the zero speed range, and the heading angle error is predicted nonlinearly in the non-zero speed range. Then, Kalman filter is used to estimate the errors of velocity, angular velocity, position, and heading angle in the zero speed range, and the estimated errors are used to correct the errors of inertial pedestrian navigation. Through the verification of the actual pedestrian navigation system, the average error of the navigation trajectory in the complex motion state is only 0.43 m, accounting for 0.35% of the total distance. In the case of long endurance walking, the navigation error is only 1.25% of the mileage. The proposed algorithm does not need to add other sensors, and does not need to limit the movement trajectory of pedestrians. It has good engineering application value.

Key words: pedestrian navigation, zero speed test, zero velocity update (ZUPT), zero angular rate update (ZARU), Kalman filtering

中图分类号: