1 |
HUANG H S , GARTNER G . Current trends and challenges in location-based services[J]. ISPRS International Journal of Geo-Information, 2018, 7 (6): 199.
doi: 10.3390/ijgi7060199
|
2 |
GUO X S , ANSARI N , LI L , et al. A hybrid positioning system for location-based services: design and implementation[J]. IEEE Communications Magazine, 2020, 58 (5): 90- 96.
doi: 10.1109/MCOM.001.1900737
|
3 |
潘献飞, 穆华, 胡小平. 单兵自主导航技术发展综述[J]. 导航定位与授时, 2018, 5 (1): 1- 11.
|
|
PAN X F , MU H , HU X P . Overview of the development of autonomous navigation technology for individual soldiers[J]. Navigation Positioning and Timing, 2018, 5 (1): 1- 11.
|
4 |
裴凌, 刘东辉, 钱久超. 室内定位技术与应用综述[J]. 导航定位与授时, 2017, 4 (3): 1- 10.
|
|
PEI L , LIU D H , QIAN J C . Overview of indoor positioning technology and application[J]. Navigation Positioning and Timing, 2017, 4 (3): 1- 10.
|
5 |
MINNE K , MACOIR N , ROSSEY J , et al. Experimental eva-luation of UWB indoor positioning for indoor track cycling[J]. Sensors, 2019, 19 (9): 2041.
doi: 10.3390/s19092041
|
6 |
XU H , DING Y , LI P , et al. An RFID indoor positioning algorithm based on Bayesian probability and K-nearest neighbor[J]. Sensors, 2017, 17 (8): 1806.
doi: 10.3390/s17081806
|
7 |
LIU F , LIU J , YIN Y Q , et al. Survey on WiFi-based indoor positioning techniques[J]. IET Communications, 2020, 14 (9): 1372- 1383.
doi: 10.1049/iet-com.2019.1059
|
8 |
OU C W, CHAO C J, CHAN F S, et al. A ZigBee position technique for indoor localization based on proximity learning[C]//Proc. of the IEEE International Conference on Mechatronics and Automation, 2017: 875-880.
|
9 |
EL-SHEIMY N , LI Y . Indoor navigation: state of the art and future trends[J]. Satellite Navigation, 2021, 2 (1): 88- 110.
|
10 |
KHAN D , CHENG Z , UCHIYAMA H , et al. Recent advances in vision-based indoor navigation: a systematic literature review[J]. Computers & Graphics, 2022, 104 (5): 24- 45.
|
11 |
ELWELL J . Inertial navigation for the urban warrior[J]. Proceedings of the SPIE International Society for optical Engineering, 1999, 3709, 196- 204.
|
12 |
BORENSTEIN J , OJEDA L , KWANMUANG S . Heuristic reduction of gyro drift for personnel tracking systems[J]. The Journal of Navigation, 2009, 62 (1): 41- 58.
|
13 |
PRATEEK G, GIRISHA R, HARI K, et al. Data fusion of dual foot-mounted INS to reduce the systematic heading drift[C]//Proc. of the 4th International Conference on Intelligent Systems, Mode-lling and Simulation, 2013: 208-213.
|
14 |
QIU C, XU Y Z, ZHU Y, et al. MAGINS: neural network inertial navigation system corrected by magnetic information[C]//Proc. of the IEEE International Performance, Computing, and Communications Conference, 2021.
|
15 |
TIAN X C , CHEN J B , HAN Y Q , et al. Pedestrian navigation system using MEMS sensors for heading drift and altitude error correction[J]. Sensor Review, 2017, 37 (3): 270- 281.
|
16 |
LI Y , WANG J J . A pedestrian navigation system based on low cost IMU[J]. Journal of Navigation, 2014, 67 (6): 929- 949.
|
17 |
WANG Z L , ZHAO H Y , QIU S , et al. Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system[J]. IEEE/ASME Trans.on Mechatronics, 2015, 20 (6): 3170- 3181.
|
18 |
周绍磊, 李松林, 戴洪德, 等. 一种优化高度通道的行人导航算法[J]. 海军航空工程学院学报, 2018, 33 (5): 60- 66.
|
|
ZHOU S L , LI S L , DAI H D , et al. A pedestrian navigation algorithm optimizing height channel[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33 (5): 60- 66.
|