系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (7): 2220-2226.doi: 10.12305/j.issn.1001-506X.2023.07.33

• 通信与网络 • 上一篇    下一篇

面向空间认知通信的轻量化网络自动调制分类方法

崔天舒1, 王栋2, 黄振1,*   

  1. 1. 清华大学北京信息科学与技术国家研究中心, 北京 100190
    2. 中国科学院大学计算机科学与技术学院, 北京 100149
  • 收稿日期:2022-05-14 出版日期:2023-06-30 发布日期:2023-07-11
  • 通讯作者: 黄振
  • 作者简介:崔天舒(1986—), 男, 博士后, 主要研究方向为射频机器学习
    王栋(1997—), 男, 博士研究生, 主要研究方向为射频机器学习

Automatic modulation classification based on lightweight network for space cognitive communication

Tianshu CUI1, Dong WANG2, Zhen HUANG1,*   

  1. 1. Beijing National Researh Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100190, China
    2. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100149, China
  • Received:2022-05-14 Online:2023-06-30 Published:2023-07-11
  • Contact: Zhen HUANG

摘要:

当前自动调制分类采用的深度学习模型存在参数量与计算量大的问题。根据连续采样同相正交信号特点, 提出了一种轻量且高效的深度网络结构。通过构造方向滤波器, 首先提取相位特征, 再提取时域特征, 最后利用通道特征均值分类。采用通信信号分类数据集进行验证, 当信噪比大于0 dB时, 准确率超过60%, 信噪比大于等于10 dB时, 准确率超过90%;与主流深度模型相比, 在达到相同准确率时, 仅用20%左右的模型参数和50%左右的推理时间, 更适合被应用于空间认知通信系统。

关键词: 自动调制分类, 深度学习, 轻量化网络结构

Abstract:

The deep learning models currently used for automatic modulation classification have the problems of numerous parameters and computation. According to the characteristics of continuous sampling in-phase and quadrature signals, a lightweight and efficient deep network structure is proposed. By constructing a directional filter, the phase features are first extracted, then the temporal features are extracted, and finally the mean values of every channel features are used for classification. After validated with communication signal classification dataset, when the signal-to-noise ratio(SNR) > 0 dB, the recognition accuracy exceeds 60%, and when the SNR ≥10 dB, the recognition accuracy exceeds 90%. Compared with mainstream deep models, when reaching the same accuracy, only about 20% of the model parameters and about 50% of the actual running time are used, which is more suitable for application in space cognitive communication systems.

Key words: automatic modulation classification, deep learning, lightweight network structure

中图分类号: