1 |
BANERJEE S , SANTOS J , HEMPEL M , et al. A novel method of near-miss event detection with software defined radar in improving railyard safety[J]. Safety, 2019, 5 (3): 55.
doi: 10.3390/safety5030055
|
2 |
SMITH A, EVANS M, DOWNEY J. Modulation classification of satellite communication signals using cumulants and neural networks[C]//Proc. of the Cognitive Communications for Aerospace Applications Workshop, 2017.
|
3 |
SILLS J A. Maximum-likelihood modulation classification for PSK/QAM[C]//Proc. of the Military Communications Conference, 1999.
|
4 |
WEI W , MENDEL J M . Maximum-likelihood classification for digital amplitude-phase modulations[J]. IEEE trans.on Communications, 2000, 48 (2): 189- 193.
doi: 10.1109/26.823550
|
5 |
HONG L, HO K C. Identification of digital modulation types using the wavelet transform[C]//Proc. of the Military Communications Conference, 1999.
|
6 |
SWAMI A , SADLER B M . Hierarchical digital modulation classification using cumulants[J]. IEEE Trans.on Communications, 2000, 48 (3): 416- 429.
doi: 10.1109/26.837045
|
7 |
HATZICHRISTOS G, FARGUES M P. A hierarchical approach to the classification of digital modulation types in multipath environments[C]// Proc. of the 35th Asilomar Conference on Signals, Systems and Computers, 2001.
|
8 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proc. of the 25th International Conference on Neural Information Processing Systems, 2012.
|
9 |
ARISOY E, SETHY A, RAMABHADRAN B, et al. Bidirectional recurrent neural network language models for automatic speech recognition[C]// Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2015: 5421-5425.
|
10 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, (5): 11074- 11082.
|
11 |
周鑫, 何晓新, 郑昌文. 基于图像深度学习的无线电信号识别[J]. 通信学报, 2019, 40 (7): 114- 125.
|
|
ZHOU X , HE X X , ZHENG C W . Radio signal recognition based on image deep learning[J]. Journal on Communications, 2019, 40 (7): 114- 125.
|
12 |
QU Z Y , WANG W Y , HOU C B , et al. Radar signal intra-pulse modulation recognition based on convolutional denoising autoencoder and deep convolutional neural network[J]. IEEE Access, 2019, 7, 112339- 112347.
doi: 10.1109/ACCESS.2019.2935247
|
13 |
PENG S L , JIANG H Y , WANG H X , et al. Modulation recognition using hierarchical deep neural networks[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (3): 718- 727.
doi: 10.1109/TNNLS.2018.2850703
|
14 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going Deeper with Convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
15 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
16 |
O'SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//Proc. of the International Conference on Engineering Applications of Neural Networks, 2016: 213-226.
|
17 |
WEST N E, O'SHEA T. Deep architectures for modulation recognition[C]//Proc. of the IEEE International Symposium on Dynamic Spectrum Access Networks, 2017.
|
18 |
SAINATH T N, VINYALS O, SENIOR A, et al. Convolutional, long short-term memory, fully connected deep neural networks[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2015: 4580-4584.
|
19 |
O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022
|
20 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2022-04-14]. https://arxiv.org/abs/1409.1556 .
|
21 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
22 |
KRZYSTON J, BHATTACHARJEA R, STARK A. Complex-valued convolutions for modulation recognition using deep learning[C]//Proc. of the IEEE International Conference on Communications Workshops, 2020.
|
23 |
崔天舒, 崔凯, 黄永辉, 等. 卷积神经网络卫星信号自动调制识别算法[J]. 北京航空航天大学学报, 2022, 48 (6): 986- 994.
|
|
CUI T S , CUI K , HUANG Y H , et al. Convolutional neural network satellite signal automatic modulation recognition algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (6): 986- 994.
|
24 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[EB/OL]. [2022-04-14]. https://arxiv.org/abs/1602.07360 .
|
25 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
|
26 |
HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2022-04-14]. https://arxiv.org/abs/1704.04861 .
|
27 |
ZHANG X, ZHOU X, LIN M, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
|
28 |
黄知涛, 周一宇, 姜文利. 基于相对无模糊相位重构的自动脉内调制特性分析[J]. 通信学报, 2003, (4): 153- 160.
|
|
HUANG Z T , ZHOU Y Y , JIANG W L . The automatic ana-lysis of intrapulse modulation characteristics based on the relatively non-ambiguity phase restoral[J]. Journal of China Institute of Communications, 2003, (4): 153- 160.
|
29 |
IGLESIAS V , GRAJAL J , ROYER P , et al. Real-time low-complexity automatic modulation classifier for pulsed radar signals[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (1): 108- 126.
doi: 10.1109/TAES.2014.130183
|
30 |
崔天舒. 面向天基电磁信号识别的深度学习方法[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2021.
|
|
CUI T S. Deep learning methods for space-based electromagnetic signal recognition[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences), 2021.
|
31 |
O'SHEA T J, WEST N. Radio machine learning dataset ge-neration with gnu radio[C]//Proc. of the GNU Radio Confe-rence, 2016.
|