1 |
LUO Y Z, LI Z Y, ZHU H. Survey on spacecraft orbital pursuit-evasion differential games. Scientia Sinica Technologica, 2020, 50(12): 1533−1545.
|
2 |
ISAACS R. Differential games. New York: John Wiley & Sons, 1965.
|
3 |
RAIVIO T, EHTAMO H. Visual aircraft identification as a pursuit-evasion game. Journal of Guidance, Control, and Dynamics, 2000, 23(4): 701−708.
|
4 |
SHIMA T Optimal cooperative pursuit and evasion strategies against a homing missile. Journal of Guidance, Control, and Dynamics, 2011, 34 (2): 414- 425.
doi: 10.2514/1.51765
|
5 |
PONTANI M, CONWAY B A Numerical solution of the threedimensional orbital pursuit-evasion game. Journal of Guidance, Control, and Dynamics, 2009, 32 (2): 474- 487.
doi: 10.2514/1.37962
|
6 |
SUN S T. Two spacecraft pursuit-evasion strategies on low earth orbit and numerical solution. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
|
7 |
YE D, SHI M M, SUN Z W. Satellite proximate pursuitevasion game with different thrust configurations. Aerospace Science and Technology, 2020, 99: 105715.
|
8 |
JAGAT A, SINCLAIR A J. Optimization of spacecraft pursuit-evasion game trajectories in the Euler-Hill reference frame. Proc. of the AIAA Guidance, Navigation, and Control Conference, 2014. DOI: 10.2514/6.2014-4131.
|
9 |
HAFER W T, REED H L, TURNER J D, et al. Sensitivity methods applied to orbital pursuit evasion. Journal of Guidance, Control, and Dynamics, 2015, 38(6): 1118−1126.
|
10 |
STUPIK J, PONTANI M, CONWAY B A. Optimal pursuit/evasion spacecraft trajectories in the hill reference frame. Proc. of the AIAA Guidance, Navigation, and Control Conference, 2012. DOI: 10.2514/6.2012-4882.
|
11 |
LI Z Y, ZHU H, LUO Y Z. A dimensionreduction solution of freetime differential games for spacecraft pursuitevasion. Acta Astronautica, 2019, 163: 201−210.
|
12 |
YIN S S, LI J, CHENG L Low-thrust spacecraft trajectory optimization via a DNN-based method. Advances in Space Research, 2020, 66 (7): 1635- 1646.
doi: 10.1016/j.asr.2020.05.046
|
13 |
CHENG L, WANG Z B, JIANG F H, et al. Fast generation of optimal asteroid landing trajectories using deep neural networks. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56(4): 2642−2655.
|
14 |
WU Q C, LI B, LI J, et al Solution of infinite time domain spacecraft pursuit strategy based on deep neural network. Aerospace Control, 2019, 37 (6): 13- 18.
|
15 |
LI Z Y, ZHU H, LUO Y Z Saddle point of orbital pursuit-evasion game under j2-perturbed dynamics. Journal of Guidance, Control, and Dynamics, 2020, 43 (9): 1733- 1739.
doi: 10.2514/1.G004459
|
16 |
BASER T, OLSDER G J. Dynamic noncooperative game theory. Philadelphia: Society for Industrial and Applied Mathematics, 1999.
|
17 |
JIANG F H, BAOYIN H X, LI J F Practical techniques for lowthrust trajectory optimization with homotopic approach. Journal of Guidance, Control, and Dynamics, 2012, 35 (1): 245- 258.
doi: 10.2514/1.52476
|
18 |
HOWARD D C. Orbital mechanics for engineering students. 2nd ed. Amsterdam: Elsevier, 2010.
|
19 |
CHENG L, WANG Z B, JIANG F H, et al. Real-time optimal control for spacecraft orbit transfer via multi-scale deep neural networks. IEEE Trans. on Aerospace and Electronic Systems, 2019, 55(5): 2436−2450.
|
20 |
CHENG L, JIANG F H, LI J F. A review on the applications of deep learning in aircraft dynamics and control. Mechanics in Engineering, 2020, 42(3): 267−276.
|
21 |
RUNARSSON T P, YAO X Search biases in constrained evolutionary optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2005, 35 (2): 233- 243.
|
22 |
VENIGALLA, SCHEERES D J. Spacecraft rendezvous and pursuit/evasion analysis using reachable sets. Proc. of the Space Flight Mechanics Meeting, 2018. DOI: 10.2514/6.2018-0219.
|