Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (5): 1210-1226.doi: 10.23919/JSEE.2022.000116
收稿日期:
2021-10-27
接受日期:
2022-07-12
出版日期:
2022-10-27
发布日期:
2022-10-27
Hang GUO1,*(), Zheng WANG1(), Bin FU2(), Kang CHEN2(), Wenxing FU2(), Jie YAN1()
Received:
2021-10-27
Accepted:
2022-07-12
Online:
2022-10-27
Published:
2022-10-27
Contact:
Hang GUO
E-mail:jsguoh@nwpu.edu.cn;wz_nwpu@126.com;binfu@nwpu.edu.cn;mars_legend@163.com;wenxingfu@nwpu.edu.cn;jyan@nwpu.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1210-1226.
Hang GUO, Zheng WANG, Bin FU, Kang CHEN, Wenxing FU, Jie YAN. Impact angle constrained fuzzy adaptive fault tolerant IGC method for Ski-to-Turn missiles with unsteady aerodynamics and multiple disturbances[J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1210-1226.
"
Initial condition parameter | Value |
Initial position of the missile | (0.0, 3 000.0) |
Initial flight path angle of the missile | 0.0 |
Initial velocity of the missile | 300.0 |
Initial pitch angular velocity of the missile | 0.0 |
Initial pitch angle of the missile | 0.0 |
Initial position of the target | (8 000.0, 6 000.0) |
Initial flight path angle of the target | 0.0 |
Initial velocity of the target | 100.0 |
"
Parameter of aerodynamics coefficients of the missile | Value |
| 0.197 7, 0.001 8, ?0.001 8 |
| 5.383 8e?4, 5.383 8e?5 |
| 0.271 3, 0.135 7 |
| 0.000 8, ?0.000 2 |
| ?0.040 8, ?0.068 5, ?0.020 4 |
"
Parameter | Value | Parameter | initial value | |
k | 40.0 | s0 | 0.0 | |
| 1.0, 3.0, 10.0, 30.0 | | 0.5 | |
| 0.01, 0.01 | | 1.0 | |
| 0.01, 0.01, 0.01, 0.01 | | 1.0 | |
| 10.0, 10.0, 10.0, 20.0 | | 0.5 | |
| 100.0, 200.0, 20.0 | | 0.5 | |
| 0.01, 0.001, 1e?10, 0.01 | | 1.0 | |
| 10.0, 50.0, 10.0, 20.0 | | 1e?4 | |
| 100.0, 200.0, 100.0 | | 0.5 | |
| 0.005, 1e?4, 0.01 | | 0.5 | |
| 20.0, 10.0, 20.0 | | 1.0 | |
| 100.0, 200.0, 100.0 | | 0.5 |
1 |
LEVY M, SHIMA T, GUTMAN S Linear quadratic integrated versus separated autopilot-guidance design. Journal of Guidance, Control and Dynamics, 2013, 36 (6): 1722- 1730.
doi: 10.2514/1.61363 |
2 | TIAN B L, ZONG Q Optimal guidance for reentry vehicles based on indirect legendre pseudospectral method. Acta Astronautica, 2011, 68 (7/8): 1176- 1184. |
3 | WANG W H, XIONG S F, WANG S, et al Three dimensional impact angle constrained integrated guidance and control for missiles with input saturation and actuator failures. Aerospace Science and Technology, 2016, 53 (6): 169- 187. |
4 | WANG X F, ZHENG Y Y, LIN H Integrated guidance and control law for cooperative attack of multiple missiles. Aerospace Science & Technology, 2015, 42 (4/5): 1- 11. |
5 | WANG J H, LIU L H, ZHAO T, et al Integrated guidance and control for hypersonic vehicles in dive phase with multiple constraints. Aerospace Science and Technology, 2016, 53 (6): 103- 115. |
6 | WANG X, WANG J Partial integrated guidance and control for missiles with three-dimensional impact angle constraints. Journal of Guidance, Control and Dynamics, 2014, 37 (2): 644- 657. |
7 |
WILLIAMS D E, RICHMAN J, FRIEDLAND B Design of an integrated strapdown guidance and control system for a tactical missile. Proc. of the AIAA Guidance and Control Conference, 1983, 57- 66.
doi: 10.2514/6.1983-2169 |
8 | LIN C F, BIBEL J E, OHLMEYER E, et al Optimal design of integrated missile guidance and control. Proc. of the AIAA and SAE World Aviation Conference, 1998, 985519. |
9 | PALUMBO N F, REARDON B E, BLAUWKAMP R A Integrated guidance and control for homing missiles. Johns Hopkins Apl Technical Digest, 2005, 25 (2): 121- 139. |
10 |
YANG X Q, LI J, DONG Y Flexible air-breathing hypersonic vehicle control based on a novel non-singular fast terminal sliding mode control and nonlinear disturbance observer. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231 (11): 2132- 2145.
doi: 10.1177/0954410016664913 |
11 | YANG Y N Positioning control for stratospheric satellites subject to dynamics uncertainty and input constraints. Aerospace Science and Technology, 2019, 86 (3): 534- 541. |
12 |
SHIMA T, IDAN M, GOLAN O M Sliding-mode control for integrated missile autopilot guidance. Journal of Guidance, Control and Dynamics, 2006, 29 (2): 250- 260.
doi: 10.2514/1.14951 |
13 | YANG S J, GUO J G, ZHOU J New integrated guidance and control of homing missiles with an impact angle against a ground target. International Journal of Aerospace Engineering, 2018, 2018, 3968242. |
14 | SHTESSEL Y B, TOURNES C H Integrated higher-order sliding mode guidance and autopilot for dual control missiles. Journal of Guidance, Control and Dynamics, 2009, 32 (1): 79- 94. |
15 |
YAMASAKI T, BALAKRISHNAN S N, TAKANO H Integrated guidance and autopilot design for a chasing UAV via high-order sliding modes. Journal of the Franklin Institute, 2012, 349 (2): 531- 558.
doi: 10.1016/j.jfranklin.2011.08.004 |
16 |
WU P, YANG M Integrated guidance and control design for missile with terminal impact angle constraint based on sliding mode control. Journal of Systems Engineering and Electronics, 2010, 21 (4): 623- 628.
doi: 10.3969/j.issn.1004-4132.2010.04.015 |
17 | ZHANG W J, FU S N, LI W, et al An impact angle constraint integral sliding mode guidance law for maneuvering targets interception. Journal of Systems Engineering and Electronics, 2020, 31 (1): 168- 184. |
18 |
LI W, WEN Q Q, HE L, et al Three-dimensional impact angle constrained distributed cooperative guidance law for anti-ship missiles. Journal of Systems Engineering and Electronics, 2021, 32 (2): 447- 459.
doi: 10.23919/JSEE.2021.000038 |
19 |
SHAMAGHDARI S, NIKRAVESH S, HAERI M Integrated guidance and control of elastic flight vehicle based on robust MPC. International Journal of Robust Nonlinear Control, 2015, 25 (15): 2608- 2630.
doi: 10.1002/rnc.3215 |
20 |
HU X X, KARIMI H R, WU L G, et al Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles. IET Control Theory and Applications, 2014, 8 (13): 1147- 1153.
doi: 10.1049/iet-cta.2013.0986 |
21 | HWANG T W, TAHK M J Integrated backstepping design of missile guidance and control with robust disturbance observer. Proc. of the SICE-ICASE International Joint Conference, 2006, 4911- 4915. |
22 | CHANG J, GUO Z Y, CIESLAK J, et al Integrated guidance and control design for the hypersonic interceptor based on adaptive incremental backstepping technique. Aerospace Science and Technology, 2019, 89 (6): 318- 332. |
23 |
YAN H, WANG X H, YU B F, et al Adaptive integrated guidance and control based on backstepping and input-to-state stability. Asian Journal of Control, 2014, 16 (2): 602- 608.
doi: 10.1002/asjc.682 |
24 | MENON P K, SWERIDUK G D, OHLMEYER E J, et al Integrated guidance and control of moving mass actuated kinetic warheads. Journal of Guidance, Control and Dynamics, 2004, 27 (1): 118- 126. |
25 |
MENON P K, OHLMEYER E J Integrated design of agile missile guidance and autopilot systems. Control Engineering Practice, 2001, 9 (10): 1095- 1106.
doi: 10.1016/S0967-0661(01)00082-X |
26 | VADDI S, MENON P K, OHLMEYER E J Numerical state-dependent riccati equation approach for missile integrated guidance control. Journal of Guidance, Control and Dynamics, 2009, 32 (2): 699- 703. |
27 | YUN J S, RYOO C K Integrated guidance and control law with impact angle constraint. Proc. of the International Conference on Control, Automation and Systems, 2011, 1239- 1243. |
28 | MING C, WANG X M, SUN R S A novel non-singular terminal sliding mode control-based integrated missile guidance and control with impact angle constraint. Aerospace Science and Technology, 2019, 94 (11): 105368. |
29 | KHANKALANTARY S, SHEIKHOLESLAM F Robust extended state observer-based three dimensional integrated guidance and control design for interceptors with impact angle and input saturation constraints. ISA Transactions, 2020, 104 (9): 299- 309. |
30 | WANG Z, YUAN J P, PAN Y O, et al Adaptive neural control for high order Markovian jump nonlinear systems with unmodeled dynamics and dead zone inputs. Neurocomputing, 2017, 247 (7): 62- 72. |
31 | HAMAYUN M T, EDWARDS C, ALWI H, et al A fault tolerant direct control allocation scheme with integral sliding modes. International Journal of Applied Mathematics & Computer Science, 2015, 25 (1): 93- 102. |
32 | SHEN Q, WANG D W, ZHU S Q, et al Inertia-free fault-tolerant spacecraft attitude tracking using control allocation. Automatica, 2015, 62 (3): 114- 121. |
33 | YANG H J, SHI P, LI X, et al Fault-tolerant control for a class of TCS fuzzy systems via delta operator approach. Signal Processing, 2014, 98 (5): 166- 173. |
34 |
ZHANG J H, SHI P, XIA Y Q Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties. IEEE Trans. on Fuzzy Systems, 2010, 18 (4): 700- 711.
doi: 10.1109/TFUZZ.2010.2047506 |
35 |
LEVANT A, ALELISHVILI L Integral high-order sliding modes. IEEE Trans. on Automatic Control, 2007, 52 (7): 1278- 1282.
doi: 10.1109/TAC.2007.900830 |
36 | SHTESSEL Y B, MORENO J A, FRIDMAN L M. Twisting sliding mode control with adaptation: Lyapunov design, methodology and application. Automatica, 2017, 75: 229−235. |
37 | BOSKOVIC J D, JACKSON J A, MEHRA R K, et al Multiple-model adaptive fault-tolerant control of a planetary lander. Journal of Guidance, Control and Dynamics, 2009, 32 (6): 1812- 1826. |
38 |
FU S S, QIU J B, CHEN L H, et al Adaptive fuzzy observer design for a class of switched nonlinear systems with actuator and sensor faults. IEEE Trans. on Fuzzy systems, 2018, 26 (6): 3730- 3742.
doi: 10.1109/TFUZZ.2018.2848253 |
39 |
CRISTOFARO A, JOHANSEN T A Fault tolerant control allocation using unknown input observers. Automatica, 2014, 50 (7): 1891- 1897.
doi: 10.1016/j.automatica.2014.05.007 |
40 | CHEN L H, LIU M, HUANG X L, et al Adaptive fuzzy sliding mode control for network-based nonlinear systems with actuator failures. IEEE Trans. on Fuzzy Systems, 2017, 26 (3): 1311- 1323. |
41 | WANG Z, PAN Y P Robust adaptive fault tolerant control for a class of nonlinear systems with dynamic uncertainties. International Journal for Light and Electron Optics, 2017, 131 (2): 941- 952. |
42 |
WU L B, YANG G H Robust adaptive fault-tolerant control for a class of uncertain nonlinear systems with multiple time delays. Journal of Process Control, 2016, 41, 1- 13.
doi: 10.1016/j.jprocont.2016.02.001 |
43 | YANG H Y, WANG H Q Robust adaptive fault-tolerant control for uncertain system with unmodeled dynamics based on fuzzy approximation. Neurocomputing, 2016, 173 (1): 1660- 1670. |
44 | FAN H J, LIU B, WANG W, et al. Adaptive fault-tolerant stabilization for nonlinear systems with Markovian jumping actuator failures and stochastic noises. Automatica, 2015, 51: 200–209. |
45 | POLYCARPOU M, IOANNOU P A robust adaptive nonlinear control design. Automatica, 1996, 32 (3): 423- 427. |
46 |
SUN K K, MOU S S, QIU J B, et al Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. on Fuzzy Systems, 2019, 27 (8): 1587- 1601.
doi: 10.1109/TFUZZ.2018.2883374 |
47 |
TONG S C, LI Y M, SHI P Fuzzy adaptive backstepping robust control for SISO nonlinear system with dynamic uncertainties. Information Sciences, 2009, 179 (9): 1319- 1332.
doi: 10.1016/j.ins.2009.01.002 |
48 |
WANG L J, BASIN M V, LI H Y, et al Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Trans. on Fuzzy Systems, 2018, 26 (4): 2336- 2347.
doi: 10.1109/TFUZZ.2017.2774185 |
49 |
WANG Z, YUAN J P Fuzzy adaptive fault tolerant IGC method for STT missiles with time-varying actuator faults and multisource uncertainties. Journal of the Franklin Institute, 2020, 357 (1): 59- 81.
doi: 10.1016/j.jfranklin.2019.09.032 |
50 | ANDERSEN G, KOLONAY R, EASTEP F. Aeroelastic analysis of rolling maneuvers with multiple control surfaces in transonic flight. Proc. of the 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 1998. DOI: 10.2514/6.1998-1803 |
51 |
GREEN B E, CHUNG J J Transonic computational fluid dynamics calculations on preproduction F/A-18 E for stability and control. Journal of Aircraft, 2007, 44 (2): 420- 426.
doi: 10.2514/1.22846 |
52 |
GHOREYSHI M, CUMMINGS R M, RONCH A D Transonic aerodynamic load modeling of X-31 aircraft pitching motions. AIAA Journal, 2013, 51 (10): 2447- 2464.
doi: 10.2514/1.J052309 |
53 |
TOMAC M, RIZZI A, JIRASEK A Computational fluid dynamics predictions of control-surface effects for F-16 XL aircraft. Journal of Aircraft, 2017, 54 (2): 395- 408.
doi: 10.2514/1.C033260 |
54 | PAUL V G, PERIYASAMY S, NIKAM K. Unsteady aerodynamics analysis for small amplitude pitch oscillations of transonic cruiser aircraft. Proc. of the International Conference on Recent Advances in Aerospace Engineering, 2017. DOI: 10.1109/ICRAAE.2017.8297231. |
55 | ZHU M L, LI Y H, QIN N, et al Shock control of a low-sweep transonic laminar flow wing. AIAA Journal, 2019, 57 (6): 2408- 2420. |
56 | YANAMASHETTI G, SINGH D B, SURYANARAYANA G K, et al Passive control of transonic flow over a blunt body using aerospikes. Journal of Spacecraft and Rockets, 2020, 57 (5): 945- 955. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||