1 |
HU S, GUAN Y L, BI G A, et al Cluster-based transform domain communication systems for high spectrum efficiency. IET Communications, 2012, 6 (16): 2734- 2739.
doi: 10.1049/iet-com.2012.0130
|
2 |
FUMAT G, CHARGE P, ZOUBIR A, et al Using set theoretic estimation to address the PAPR problem of spectrum-constrained signals. IEEE Trans. on Wireless Communications, 2012, 11 (7): 2373- 2381.
doi: 10.1109/TWC.2012.051412.102026
|
3 |
HU S, BI G A, GUAN Y L, et al TDCS-based cognitive radio networks with multiuser interference avoidance. IEEE Trans. on Communications, 2013, 61 (12): 4828- 4835.
doi: 10.1109/TCOMM.2013.111313.130261
|
4 |
FUMAT G, CHARGE P, ZOUBIR A, et al Transform domain communication systems from a multidimensional perspective: impacts on bit error rate and spectrum efficiency. IET Communications, 2010, 5 (4): 476- 483.
|
5 |
LIN R, BI G A, LIU X, et al On the modulation and signaling design for a transform domain communication system. IET Communications, 2014, 8 (16): 2909- 2916.
doi: 10.1049/iet-com.2013.1076
|
6 |
CHAKRAVARTHY V, NUNEZ A S, STEPHENS J P, et al. TDCS, OFDM, and MC-CDMA: a brief tutorial. IEEE Communications Magazine, 2005, 43(9): S11−S16.
|
7 |
SUN D C, CHEN Y, LIU J A, et al Digital signal modulation recognition algorithm based on VGGNet model. Proc. of the IEEE 5th International Conference on Computer and Communications, 2019, 1575- 1579.
|
8 |
YANG Z Y, TAO R, WANG Y, et al A novel multi-carrier order division multi-access communication system based on TDCS with fractional Fourier transform scheme. Wireless Personal Communications, 2014, 79 (2): 301- 320.
|
9 |
WANG G S, WANG Y Q, HUANG G C, et al Classification methods with signal approximation for unknown interference. IEEE Access, 2020, 8, 37933- 37945.
|
10 |
KIRBY M, SIROVICH L Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans. on Pattern Analysis & Machine Intelligence, 1990, 12 (1): 103- 108.
|
11 |
FRALEY C, RAFTERY A E Model-based clustering, discriminant analysis, and density estimation. Journal of American Statistical Association, 2002, 97 (458): 611- 631.
doi: 10.1198/016214502760047131
|
12 |
HE R, ZHENG W S, HU B G, et al Two-stage nonnegative sparse representation for large-scale face recognition. IEEE Trans. on Neural Networks & Learning Systems, 2013, 24 (1): 35- 46.
|
13 |
WRIGHT J, YANG A Y, GANESH A, et al Robust face recognition via sparse representation. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2009, 31 (2): 210- 227.
|
14 |
SCHIITZE H, BARTH E, MARTINETZ T Learning efficient data representations with orthogonal sparse coding. IEEE Trans. on Computational Imaging, 2016, 2 (3): 177- 189.
doi: 10.1109/TCI.2016.2557065
|
15 |
LEWICKI M Efficient coding of natural sounds. Nature Neuroscience, 2002, 5 (3): 356- 363.
|
16 |
TAN X P, SU S J, SUN X Y Research on narrowband interference suppression technology of UAV network based on spread spectrum communication. Proc. of the IEEE International Conference on Artificial Intelligence and Information Systems, 2020, 335- 338.
|
17 |
TENGSTRAND S, ELIARDSSON P, AXELL E Mitigation of multiple impulse noise sources through selective attenuation. Proc. of the IEEE Military Communications Conference, 2016, 855- 860.
|
18 |
KARAWAS G, GOVERDHANAM K, KOH J Wideband active interference cancellation techniques for military applications. Proc. of the 5th European Conference on Antennas & Propagation, 2011, 390- 392.
|
19 |
LIU S C, YANG F, DING W B, et al Double kill: compressive-sensing-based narrow-band interference and impulsive noise mitigation for vehicular communications. IEEE Trans. on Vehicular Technology, 2016, 65 (7): 5099- 5111.
doi: 10.1109/TVT.2015.2459060
|
20 |
YANG J W, LAMARE R C Widely-linear minimum-mean-squared error multiple-candidate successive interference cancellation for multiple access interference and jamming suppression in direct-sequence code-division multiple-access systems. IET Signal Processing, 2015, 9 (1): 73- 81.
doi: 10.1049/iet-spr.2013.0375
|
21 |
ZHANG Y, JIA X S, KOU B H Adaptive multi-tone jamming suppression for DSSS communications based on compressive sensing. Proc. of the 8th International Congress on Image & Signal Processing, 2015, 1323- 1327.
|
22 |
AXELL E, ELIARDSSON P, TENGSTRAND S, et al Power control in interference channels with class A impulse noise. IEEE Trans. on Wireless Communications Letters, 2017, 6 (1): 102- 105.
|
23 |
CHEN S X, DENG Z D, MA S Q, et al Manifold proximal point algorithms for dual principal component pursuit and orthogonal dictionary learning. IEEE Trans. on Signal Processing, 2021, 69 (7): 4759- 4773.
|
24 |
WEI D X, ZHANG S D, CHEN S Q, et al Research on anti-jamming technology of chaotic composite short range detection system based on underdetermined signal separation and spectral analysis. IEEE Access, 2019, 7, 42298- 42308.
|
25 |
SU D T, GAO M G Research on jamming recognition technology based on characteristic parameters. Proc. of the IEEE 5th International Conference on Signal & Image Processing, 2020, 303- 307.
|
26 |
KUZOVNIKOV A Study of the methods for developing jamming-immune communications systems with the use of wavelet-modulated signals. Journal of Communications Technology & Electronics, 2014, 59 (1): 61- 70.
|
27 |
DONG Y P, LIAO F Z, PANG T Y, et al Boosting adversarial attacks with momentum. Proc. of the IEEE/CVF Conference on Computer Vision & Pattern Recognition, 2018, 9185- 9193.
|
28 |
WU Y, WANG C, ZHANG Y Q, et al Unsupervised feature selection via joint local learning and group sparse regression. Frontiers of Information Technology & Electronic Engineering, 2019, 20 (5): 538- 553.
|
29 |
ELDAR Y, KUTYNIOK G. Compressed sensing: theory and applications. London: Cambridge University Press, 2012.
|
30 |
SHABAN M, PERKINS D, BAYOUMI M. Application of compressed sensing in wideband cognitive radios when sparsity is unknown. Proc. of the 15th Annual IEEE Wireless & Microwave Technology Conference, 2014. DOI: 10.1109/WAMICON.2014.6857771.
|
31 |
COIFMAN R R, WICKERHAUSER M V Entropy-based algorithms for best-basis selection. IEEE Trans. on Information Theory, 1992, 38 (2): 713- 718.
doi: 10.1109/18.119732
|
32 |
DONOHO D L Adaptive signal representations: how much is too much? Proc. of the Workshop on Information Theory & Statistics, 1994, 53- 60.
|
33 |
WANG Y Q, WANG G S, LI N, et al Cognitive anti-interference communication of unmanned autonomous system supported by intelligent “cloud brain”. Proc. of the International Conference on Artificial Intelligence & Computer Engineering, 2020, 199- 203.
|
34 |
CANDES E J, GUO F New multiscale transforms, minimum total-variation synthesis: applications to edge-preserving image reconstruction. Signal Processing, 2002, 82 (11): 1519- 1543.
doi: 10.1016/S0165-1684(02)00300-6
|
35 |
ZHANG Y S, JIA X, YIN C B, et al NBI mitigation in DSSS communications via block sparse Bayesian learning. Signal Processing, 2019, 158 (5): 129- 140.
|
36 |
NESTEROV Y Smooth minimization of non-smooth functions. Mathematical Programming: Series A, 2005, 103 (12): 127- 152.
|
37 |
BECKER S, CANDES, E J, GRANT M Templates for convex cone problems with applications to sparse signal recovery. Mathematical Programming Computation, 2010, 3 (7): 165- 218.
|
38 |
HU S, BI G A, GUAN Y L, et al Spectrally efficient transform domain communication system with quadrature cyclic code shift keying. IET Communications, 2013, 7 (4): 382- 390.
doi: 10.1049/iet-com.2012.0247
|