1 |
CUOMO K M , PION J E , MAYHAN J T . Ultrawide-band coherent processing[J]. IEEE Trans.on Antennas and Propagation, 1999, 47 (6): 1094- 1107.
doi: 10.1109/8.777137
|
2 |
SERAFINO G , SCOTTI F , LEMBO L , et al. Toward a new generation of radar systems based on microwave photonic technologies[J]. Journal of Lightwave Technology, 2019, 37 (2): 643- 650.
doi: 10.1109/JLT.2019.2894224
|
3 |
MALACARNE A , MARESCA S , SCOTTI F , et al. Coherent dual-band radar-over- fiber network with VCSEL-based signal distribution[J]. Journal of Lightwave Technology, 2020, 38 (22): 6257- 6264.
doi: 10.1109/JLT.2020.3011800
|
4 |
PENG S W , LI S Y , XUE X X , et al. A photonics-based cohe-rent dual-band radar for super-resolution range profile[J]. IEEE Photonics Journal, 2019, 11 (4): 1- 8.
|
5 |
熊娣, 王俊岭, 赵莉芝, 等. 基于酉ESPRIT的多频带融合ISAR成像[J]. 电子与信息学报, 2019, 41 (2): 285- 292.
|
|
XIONG D , WANG J L , ZHAO L Z , et al. Unitary ESPRIT based multiband fusion ISAR imaging[J]. Journal of Electronics and Information Technology, 2019, 41 (2): 285- 292.
|
6 |
田彪, 刘洋, 呼鹏江, 等. 宽带逆合成孔径雷达高分辨成像技术综述[J]. 雷达学报, 2020, 9 (5): 765- 802.
|
|
TIAN B , LIU Y , HU P J , et al. Review of high-resolution imaging techniques of wideband inverse synthetic aperture radar[J]. Journal of Radars, 2020, 9 (5): 765- 802.
|
7 |
ZHU X X , GUO B F , HU W H , et al. Scene segmentation of multi-band ISAR fusion imaging based on MB-PCSBL[J]. IEEE Sensors Journal, 2021, 21 (3): 3520- 3532.
doi: 10.1109/JSEN.2020.3026109
|
8 |
王成. 雷达信号层融合成像技术研究[D]. 长沙: 国防科学技术大学, 2006.
|
|
WANG C. Research on radar signal level fusion imaging techniques[D]. Changsha: National University of Defense Technology, 2006.
|
9 |
TIAN J H , SUN J P , WANG G H , et al. Multiband radar signal coherent fusion processing with IAA and apFFT[J]. IEEE Signal Processing Letters, 2013, 20 (5): 463- 466.
doi: 10.1109/LSP.2013.2251631
|
10 |
邹永强, 高勋章, 黎湘. 低信噪比下多频段雷达数据高精度相参配准[J]. 系统工程与电子技术, 2015, 37 (1): 48- 54.
|
|
ZOU Y Q , GAO X Z , LI X . High precision coherent compensation for multiband radar data at low SNR[J]. Systems Engineering and Electronics, 2015, 37 (1): 48- 54.
|
11 |
XIONG D, WANG J L, QI X Y, et al. A coherent compensation method for multiband fusion imaging[C]//Proc. of the IEEE Radar Conference, 2017: 1024-1027.
|
12 |
XIONG D , WANG J L , ZHAO L Z , et al. Sub-band mutual-coherence compensation in multiband fusion ISAR imaging[J]. IET Radar, Sonar & Navigation, 2019, 13 (7): 1056- 1062.
|
13 |
ZHU X X , LIU L M , GUO B F , et al. Coherent compensation and high-resolution technology of multi-band inverse synthetic aperture radar fusion imaging[J]. IET Radar, Sonar & Navigation, 2021, 15 (2): 167- 180.
|
14 |
田彪, 刘洋, 徐世友, 等. 基于几何绕射理论模型高精度参数估计的多频带合成成像[J]. 电子与信息学报, 2013, 35 (7): 1532- 1539.
|
|
TIAN B , LIU Y , XU S Y , et al. Multi-band fusion imaging based on high precision parameter estimation of geometrical theory of diffraction model[J]. Journal of Electronics & Information Technology, 2013, 35 (7): 1532- 1539.
|
15 |
BAI X R , ZHOU F , WANG Q , et al. Sparse subband imaging of space targets in high-speed motion[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 51 (7): 4144- 4154.
doi: 10.1109/TGRS.2012.2227756
|
16 |
WANG T J , ZHANG Y , ZHAO H , et al. Multiband radar signal coherent processing algorithm for motion target[J]. Interna-tional Journal of Antennas and Propagation, 2017, 2017, 4060789.
|
17 |
贠龄童, 赵宏钟, 杜梦园. 动目标异源雷达相参配准研究[J]. 雷达科学与技术, 2018, 16 (3): 303- 310.
|
|
YUN L T , ZHAO H Z , DU M Y . Research on coherent compensation method of moving target under multiple radars[J]. Radar Science and Technology, 2018, 16 (3): 303- 310.
|
18 |
HU P J , XU S Y , WU W Z , et al. Sparse subband ISAR imaging based on autoregressive model and smoothed ℓ0 algorithm[J]. IEEE Sensors Journal, 2018, 18 (22): 9315- 9323.
|
19 |
呼鹏江. 空天目标逆合成孔径雷达精细成像技术研究[D]. 长沙: 国防科学技术大学, 2018.
|
|
HU P J. Research on inverse synthetic aperture radar fine imaging technology of aerospace targets[D]. Changsha: National University of Defense Technology, 2018.
|
20 |
BIDON S, SAVY L, DEUDON F. Fast coherent integration for migrating targets with velocity ambiguity[C]//Proc. of the IEEE Radar Conference, 2011: 027-032.
|
21 |
DIPIETRO R C, FANTE R L, PERRY R P. Space-based bistatic GMTI using low resolution SAR[C]//Proc. of the IEEE Aerospace Conference, 1997: 181-193.
|
22 |
ZHANG S S, TAO Z, TENG L, et al. Dim target detection based on Keystone transform[C]//Proc. of the IEEE International Radar Conference, 2005: 889-894.
|
23 |
RICHARDS M A. The Keystone transformation for correcting range migration in range-doppler processing[EB/OL]. [2020-12-08]. http://users.ece.gatech.edu/mrichard/Keystone.pdf.
|
24 |
OPPENHEIM A V, WILLSKY A S, NAWAB S H. Signals and systems[M]. 2nd ed. Upper Saddle River: Prentice Hall, 1996.
|
25 |
NGUYEN V K , TURLEY M D E , FABRIZIO G A . A new data extrapolation approach based on spectral partitioning[J]. IEEE Signal Processing Letters, 2016, 23 (4): 454- 458.
|
26 |
DE W S , BROERSEN P M T . The burg algorithm for segments[J]. IEEE Trans.on Signal Processing, 2000, 48 (10): 2876- 2880.
|
27 |
NAISHADHAM K , PIOU J E . A robust state space model for the characterization of extended returns in radar target signatures[J]. IEEE Trans.on Antennas and Propagation, 2008, 56 (6): 1742- 1751.
|
28 |
WANG Y W , LI J , STOICA P . Spectral analysis of signals: the missing data case[M]. San Rafael: Morgan & Claypool, 2006: 13- 48.
|
29 |
XIONG D , WANG J L , ZHAO L Z , et al. BSBL-based multiband fusion ISAR imaging[J]. The Journal of Engineering, 2019, 2019 (19): 6039- 6042.
|
30 |
MARPLE S L . Digital spectral analysis[M]. 2nd ed Garden City: Dover Publications, 2019: 191- 206.
|