系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (8): 2688-2698.doi: 10.12305/j.issn.1001-506X.2022.08.35
• 可靠性 • 上一篇
荘露1, 陆中1,*, 宋海靖2, 周伽3
收稿日期:
2021-09-26
出版日期:
2022-08-01
发布日期:
2022-08-24
通讯作者:
陆中
作者简介:
荘露 (1998—), 女, 硕士研究生, 主要研究方向为适航符合性验证、系统安全性评估|陆中 (1980—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为可靠性工程、系统安全、适航管理|宋海靖 (1988—), 女, 高级工程师, 硕士, 主要研究方向为系统可靠性管理|周伽 (1981—), 女, 高级工程师, 硕士, 主要研究方向为系统可靠性管理
基金资助:
Lu ZHUANG1, Zhong LU1,*, Haijing SONG2, Jia ZHOU3
Received:
2021-09-26
Online:
2022-08-01
Published:
2022-08-24
Contact:
Zhong LU
摘要:
为系统的设备/功能分配研制保证等级并实施相应的研制保证活动, 能使研制过程发生错误的可能性最小化。以设备/功能的研制保证等级为决策变量, 以研制保证等级分配原则和系统顶层失效状态发生概率要求为约束条件, 以系统研制成本最小为优化目标, 构建了机载系统研制保证等级分配模型。以所有设备/功能的研制保证等级组成的向量为个体, 提出了基于遗传粒子群(genetic algorithm and particle swarm optimization, GA-PSO) 混合算法的分配模型求解方法。最后, 结合某假定机载系统和某飞机电传飞控系统给出了应用实例, 结论表明本文方法有效降低了对设计人员经验的依赖, 并且对比单一算法具有更高的精确度和计算效率。
中图分类号:
荘露, 陆中, 宋海靖, 周伽. 一种机载系统研制保证等级分配的优化方法[J]. 系统工程与电子技术, 2022, 44(8): 2688-2698.
Lu ZHUANG, Zhong LU, Haijing SONG, Jia ZHOU. An optimization method for development assurance level assignment of airborne system[J]. Systems Engineering and Electronics, 2022, 44(8): 2688-2698.
表4
实例1中系统的I/F信息"
I/F编号 | 1 | 2 | 3 | 4 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 1e-4 | 2e-3 | 6e-2 | 3e-1 | 4e-4 | 6e-3 | 5e-2 | 6e-1 | 2e-5 | 8e-4 | 8e-3 | 8e-2 | 1e-5 | 3e-4 | 9e-3 | 8e-2 |
费用 | 88 | 75 | 66 | 30 | 76 | 56 | 44 | 31 | 85 | 72 | 63 | 33 | 77 | 59 | 40 | 34 |
I/F编号 | 5 | 6 | 7 | 8 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 8e-5 | 4e-4 | 2e-3 | 7e-2 | 6e-5 | 6e-4 | 2e-3 | 9e-3 | 2e-5 | 7e-4 | 2e-3 | 9e-3 | 1e-5 | 2e-4 | 3e-3 | 5e-2 |
费用 | 92 | 77 | 44 | 38 | 79 | 59 | 37 | 22 | 74 | 56 | 36 | 25 | 65 | 58 | 48 | 26 |
I/F编号 | 9 | 10 | 11 | 12 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 1e-5 | 8e-3 | 1e-2 | 2e-2 | 8e-5 | 5e-3 | 2e-2 | 8e-2 | 1e-5 | 4e-4 | 5e-4 | 7e-3 | 4e-5 | 6e-4 | 2e-3 | 9e-2 |
费用 | 73 | 65 | 44 | 18 | 65 | 53 | 35 | 19 | 73 | 65 | 43 | 16 | 69 | 55 | 34 | 14 |
表6
实例2中系统FFS与I/F的对应关系"
I/F | FFS | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |||
驾驶杆位置传感器 | √ | ||||||||||||||||
驾驶杆受力传感器 | √ | ||||||||||||||||
驾驶手轮位置传感器 | √ | √ | |||||||||||||||
驾驶手轮受力传感器 | √ | √ | |||||||||||||||
方向舵踏板位置传感器 | √ | ||||||||||||||||
方向舵配平位置传感器 | √ | ||||||||||||||||
升降舵PCU | √ | ||||||||||||||||
升降舵传感器 | √ | ||||||||||||||||
水平安定面PCU | √ | ||||||||||||||||
水平安定面传感器 | √ | ||||||||||||||||
安定面配平超控电门 | √ | ||||||||||||||||
襟翼拉杆位置传感器 | √ | √ | √ | ||||||||||||||
襟翼PCU | √ | √ | √ | ||||||||||||||
襟翼传感器 | √ | √ | √ | ||||||||||||||
副翼PCU | √ | √ | √ | ||||||||||||||
副翼传感器 | √ | √ | √ | ||||||||||||||
方向舵PCU | √ | ||||||||||||||||
方向舵传感器 | √ | ||||||||||||||||
方向舵配平开关 | √ | ||||||||||||||||
方向舵配平取消开关 | √ | ||||||||||||||||
减速扰流板拉杆 | √ | √ | |||||||||||||||
扰流板PCU | √ | √ | |||||||||||||||
扰流板传感器 | √ | √ | |||||||||||||||
CPU模块 | √ | ||||||||||||||||
A/D、D/A板 | √ | ||||||||||||||||
GPS模块 | √ | ||||||||||||||||
垂直陀螺 | √ | ||||||||||||||||
磁航向传感器 | √ | ||||||||||||||||
三轴速率陀螺 | √ | ||||||||||||||||
倾斜保护电路 | √ | ||||||||||||||||
俯仰保护电路 | √ | ||||||||||||||||
高度保护电路 | √ | ||||||||||||||||
ACE | √ | √ | √ | ||||||||||||||
AIMS | √ | ||||||||||||||||
ADIRU | √ | ||||||||||||||||
SAARU | √ | ||||||||||||||||
ADM | √ | ||||||||||||||||
主电源系统控制器 | √ | ||||||||||||||||
APU | √ | ||||||||||||||||
应急电源 | √ | ||||||||||||||||
襟缝翼控制计算机 | √ | √ | |||||||||||||||
缝翼手柄传感器 | √ | √ | |||||||||||||||
缝翼PCU | √ | √ | |||||||||||||||
缝翼传感器 | √ | √ | |||||||||||||||
制动器控制杆位置传感器 | √ | √ | |||||||||||||||
反推力位置传感器 | √ | √ |
表7
实例2中系统的I/F信息"
I/F名称 | 驾驶杆位置传感器 | 驾驶杆受力传感器 | 驾驶手轮位置传感器 | 驾驶手轮受力传感器 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 1e-4 | 2e-3 | 3e-2 | 6e-2 | 4e-4 | 6e-3 | 5e-2 | 6e-2 | 2e-4 | 8e-3 | 1e-3 | 8e-2 | 1e-4 | 3e-3 | 9e-3 | 8e-2 |
费用/千美元 | 88 | 75 | 66 | 30 | 76 | 56 | 44 | 31 | 85 | 72 | 63 | 33 | 77 | 59 | 40 | 34 |
I/F名称 | 方向舵踏板位置传感器 | 方向舵配平位置传感器 | 升降舵PCU | 升降舵传感器 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 8e-4 | 4e-3 | 2e-2 | 7e-2 | 6e-4 | 6e-3 | 2e-2 | 8e-2 | 2e-4 | 7e-4 | 2e-3 | 1e-2 | 1e-4 | 2e-3 | 3e-2 | 5e-2 |
费用/千美元 | 92 | 77 | 44 | 38 | 79 | 59 | 37 | 22 | 74 | 56 | 36 | 25 | 65 | 58 | 48 | 26 |
I/F名称 | 水平安定面PCU | 水平安定面传感器 | 安定面配平超控电门 | 襟翼拉杆位置传感器 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | A | B | C | D | |||
失效概率 | 1e-4 | 8e-3 | 1e-2 | 2e-2 | 1e-4 | 5e-4 | 2e-3 | 8e-2 | 6e-4 | 4e-4 | 6e-4 | 2e-3 | 9e-2 | |||
费用/千美元 | 73 | 65 | 44 | 18 | 65 | 53 | 35 | 19 | 73 | 69 | 55 | 34 | 14 | |||
I/F名称 | 襟翼PCU | 襟翼传感器 | 副翼PCU | 副翼传感器 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 1e-4 | 5e-4 | 6e-3 | 3e-2 | 4e-4 | 6e-3 | 1e-2 | 6e-2 | 2e-4 | 1e-3 | 1e-2 | 8e-2 | 1e-4 | 5e-4 | 9e-3 | 8e-2 |
费用/千美元 | 88 | 75 | 66 | 30 | 76 | 56 | 44 | 31 | 85 | 72 | 63 | 33 | 77 | 59 | 40 | 34 |
I/F名称 | 方向舵PCU | 方向舵传感器 | 方向舵配平开关 | 方向舵配平取消开关 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | A | ||||||
失效概率 | 8e-4 | 4e-3 | 8e-3 | 7e-2 | 2e-4 | 6e-4 | 2e-3 | 8e-2 | 2e-4 | 1e-4 | ||||||
费用/千美元 | 92 | 77 | 44 | 38 | 79 | 59 | 37 | 22 | 74 | 65 | ||||||
I/F名称 | 减速扰流板拉杆 | 扰流板PCU | 扰流板传感器 | CPU模块 | ||||||||||||
DAL | A | A | B | C | D | A | B | C | D | A | B | C | D | |||
失效概率 | 1e-4 | 2e-4 | 5e-4 | 2e-3 | 8e-2 | 1e-4 | 1e-3 | 5e-3 | 7e-2 | 1e-4 | 6e-4 | 2e-3 | 9e-3 | |||
费用/千美元 | 73 | 65 | 53 | 35 | 19 | 73 | 65 | 43 | 16 | 69 | 55 | 34 | 14 | |||
I/F名称 | A/D、D/A板 | GPS模块 | 垂直陀螺 | 磁航向传感器 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 6e-5 | 2e-4 | 8e-4 | 3e-3 | 4e-5 | 6e-4 | 1e-3 | 6e-3 | 5e-5 | 8e-5 | 8e-4 | 8e-3 | 1e-4 | 5e-4 | 9e-3 | 8e-2 |
费用/千美元 | 88 | 75 | 66 | 30 | 76 | 56 | 44 | 31 | 86 | 72 | 63 | 33 | 77 | 59 | 40 | 34 |
I/F名称 | 三轴速率陀螺 | 倾斜保护电路 | 俯仰保护电路 | 高度保护电路 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 1e-4 | 4e-3 | 8e-3 | 7e-2 | 1e-4 | 6e-4 | 2e-3 | 8e-2 | 2e-5 | 7e-4 | 2e-3 | 9e-2 | 1e-4 | 6e-4 | 3e-3 | 5e-2 |
费用/千美元 | 92 | 77 | 44 | 38 | 79 | 59 | 37 | 22 | 74 | 56 | 36 | 25 | 65 | 58 | 48 | 26 |
I/F名称 | ACE | AIMS | ADIRU | SAARU | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 1e-5 | 8e-5 | 1e-4 | 6e-3 | 1e-5 | 1e-4 | 5e-4 | 8e-3 | 1e-5 | 2e-4 | 5e-4 | 7e-3 | 4e-5 | 6e-4 | 2e-3 | 9e-3 |
费用/千美元 | 113 | 95 | 73 | 58 | 85 | 73 | 55 | 45 | 73 | 65 | 43 | 36 | 69 | 55 | 34 | 24 |
I/F名称 | ADM | 主电源系统控制器 | APU | 应急电源 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 8e-5 | 6e-4 | 1e-3 | 5e-3 | 2e-5 | 2e-4 | 8e-4 | 8e-3 | 2e-5 | 3e-5 | 9e-4 | 8e-3 | 2e-5 | 9e-5 | 2e-4 | 7e-3 |
费用/千美元 | 88 | 75 | 66 | 30 | 96 | 76 | 64 | 41 | 85 | 72 | 63 | 33 | 67 | 56 | 40 | 34 |
I/F名称 | 襟缝翼控制计算机 | 缝翼手柄传感器 | 缝翼PCU | 缝翼传感器 | ||||||||||||
DAL | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
失效概率 | 1e-5 | 6e-5 | 2e-4 | 9e-3 | 1e-4 | 8e-4 | 6e-3 | 3e-2 | 2e-4 | 1e-3 | 8e-3 | 8e-2 | 1e-4 | 3e-4 | 9e-3 | 8e-2 |
费用/千美元 | 99 | 87 | 74 | 58 | 79 | 59 | 37 | 22 | 74 | 56 | 36 | 25 | 65 | 58 | 48 | 26 |
I/F名称 | 制动器控制杆位置传感器 | 反推力位置传感器 | / | / | ||||||||||||
DAL | A | B | C | D | A | B | C | D | / | / | / | / | / | / | / | / |
失效概率 | 1e-4 | 4e-4 | 2e-3 | 7e-2 | 6e-4 | 1e-3 | 6e-3 | 8e-2 | / | / | / | / | / | / | / | / |
费用/千美元 | 73 | 65 | 44 | 18 | 75 | 53 | 39 | 25 | / | / | / | / | / | / | / | / |
表8
实例2中GA、PSO、ABC和GA-PSO的运行结果"
次数 | 最小总研制成本/千美元 | |||
GA | PSO | ABC | GA-PSO | |
1 | 2 534 | 2 440 | 2 486 | 2 359 |
2 | 2 519 | 2 421 | 2 503 | 2 349 |
3 | 2 496 | 2 470 | 2 482 | 2 370 |
4 | 2 506 | 2 455 | 2 410 | 2 345 |
5 | 2 563 | 2 402 | 2 487 | 2 361 |
6 | 2 533 | 2 464 | 2 481 | 2 364 |
7 | 2 496 | 2 397 | 2 477 | 2 363 |
8 | 2 521 | 2 444 | 2 481 | 2 376 |
9 | 2 452 | 2 394 | 2 496 | 2 353 |
10 | 2 539 | 2 416 | 2 466 | 2 359 |
耗时/s | 193.124 | 8.571 | 83.932 | 83.199 |
表9
实例2中系统的DAL分配结果"
I/F名称 | DAL | I/F名称 | DAL | |
驾驶杆位置传感器 | C | 襟翼传感器 | C | |
驾驶杆受力传感器 | C | 副翼PCU | B | |
驾驶手轮位置传感器 | B | 副翼传感器 | C | |
驾驶手轮受力传感器 | C | 方向舵PCU | C | |
方向舵踏板位置传感器 | C | 方向舵传感器 | C | |
方向舵配平位置传感器 | C | 方向舵配平开关 | A | |
升降舵PCU | C | 方向舵配平取消开关 | A | |
升降舵传感器 | A | 减速扰流板拉杆 | A | |
水平安定面PCU | A | 扰流板PCU | C | |
水平安定面传感器 | C | 扰流板传感器 | C | |
安定面配平超控电门 | A | CPU模块 | C | |
襟翼拉杆位置传感器 | C | A/D、D/A板 | C | |
襟翼PCU | C | GPS模块 | C | |
垂直陀螺 | C | ADM | A | |
磁航向传感器 | C | 主电源系统控制器 | B | |
三轴速率陀螺 | C | APU | B | |
倾斜保护电路 | C | 应急电源 | C | |
俯仰保护电路 | C | 襟缝翼控制计算机 | D | |
高度保护电路 | C | 缝翼手柄传感器 | C | |
ACE | A | 缝翼PCU | C | |
AIMS | C | 缝翼传感器 | D | |
ADIRU | C | 制动器控制杆位置传感器 | D | |
SAARU | C | 反推力位置传感器 | D |
1 | ARP 4754A. Guidelines for development of civil aircraft and systems[S]. Washington D.C. : Society of Automotive Engineers, 2010: 37-50. |
2 | ARP 4761 . Guidelines and methods for conducting the safety assessment process on civil air-borne system and equipment[J]. Warrendale: Society of Automotive Engineers, 1996, 12- 28. |
3 | ISO 26262 . Road vehicles-functional safety[J]. Switzerland: International Organization for Standardization Copyright Office, 2011, 2- 3. |
4 | EN 50129-1999 . Railway applications: the specification and demonstration of reliability, maintainability and safety[J]. UK: British Standards Institution, 1999, 30- 39. |
5 |
OUEDRAOGO K A , BEUGIN J , El-KOURSI E , et al. Toward an application guide for safety integrity level allocation in railway systems[J]. Risk Analysis, 2018, 38 (8): 1634- 1655.
doi: 10.1111/risa.12972 |
6 | 燕飞, 唐涛, 闫宏伟. 安全完善度等级SIL的概念与划分原则研究[J]. 北京交通大学学报, 2017, 41 (5): 79- 84. |
YAN F , TANG T , YAN H W . Research on concept and allocation principle of safety integrity level[J]. Journal of Beijing Jiaotong University, 2017, 41 (5): 79- 84. | |
7 |
GHERAIBIA Y , KABIR S , DJAFRI K , et al. An overview of the approaches for automotive safety integrity levels allocation[J]. Journal of Failure Analysis and Prevention, 2018, 18 (3): 707- 720.
doi: 10.1007/s11668-018-0466-9 |
8 | MENON C, IACOVELLI S, KIRNER R. ODRE workshop: using SIL arithmetic to design safe and secure systems[C]//Proc. of the IEEE 23rd International Symposium on Real-Time Distributed Computing, 2020: 213-218. |
9 | PAPADOPOULOS Y , MCDERMID J A . The potential for a generic approach to certification of safety critical systems in the transportation sector[J]. Reliability Engineering & System Safety, 1999, 63 (1): 47- 66. |
10 | SOROKOS I, PAPADOPOULOS Y, AZEVEDO L, et al. Automating allocation of development assurance levels: an extension to hiP-HOPS[C]//Proc. of the 5th IFAC International Workshop on Dependable Control of Discrete Systems, 2015: 9-14. |
11 |
GHERAIBIA Y , DJAFRI K , KRIMOU H . Ant colony algorithm for automotive safety integrity level allocation[J]. Applied Intelligence, 2018, 48 (3): 555- 569.
doi: 10.1007/s10489-017-1000-6 |
12 | LI X N , LU Z , WANG J Y . An optimization approach for DAL assignments[J]. Aircraft Engineering & Aerospace Technology, 2018, 90 (2): 328- 335. |
13 | LI H Y, XIE L Y, SONG J X, et al. Reliability allocation optimization of aero engine based on grey prediction theory[C]//Proc. of the 12th IEEE International Conference on Reliability, Maintainability, and Safety, 2018: 457-462. |
14 |
CHAMBARI A , AZIMI P , NAJAFI A A . A bi-objective simulation-based optimization algorithm for redundancy allocation problem in series-parallel systems[J]. Expert Systems with Applications, 2021, 173, 114745.
doi: 10.1016/j.eswa.2021.114745 |
15 | OUYANG Z Y , LIU Y , RUAN S J , et al. An improved particle swarm optimization algorithm for reliability redundancy allocation problem with mixed redundancy strategy and heterogeneous components[J]. Reliability Engineering and System Safety, 2019, 181 (1): 62- 74. |
16 | 刘朝霞, 孙宇锋, 轩杰, 等. 考虑多因素的可修系统任务可靠性分配方法[J]. 北京航空航天大学学报, 2019, 45 (4): 834- 840. |
LIU Z X , SUN Y F , XUAN J , et al. Mission reliability allocation method considering multiple factors for repair-able systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (4): 834- 840. | |
17 | 李煜. 智能前沿: 群智能优化算法及应用[M]. 北京: 中国经济出版社, 2020. |
LI Y . Frontiers inartificial intelligence: swarm intelligence optimization algorithms and applications[M]. Beijing: China Economic Publishing House, 2020. | |
18 | 武装. 几种改进的智能优化算法及其应用[M]. 北京: 科学技术文献出版社, 2018. |
WU Z . Several improved intelligent optimization algorithms and their applications[M]. Beijing: Science and Technical Docu- mentation Press, 2018. | |
19 | ZHANG J, ZHOU Q, LI J, et al. Overview the approaches for maximum power point of photovoltaic arrays in partially shaded environment[C]//Proc. of the IEEE 4th Conference on Energy Internet and Energy System Integration, 2020. |
20 |
KATOCH S , CHAUHAN S S , KUMAR V . A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80 (5): 8091- 8126.
doi: 10.1007/s11042-020-10139-6 |
21 |
ZHOU X P , HUANG X C , ZHAO X F . Optimization of the critical slip surface of threee-dimensional slope by using an improved genetic algorithm[J]. International Journal of Geomechanics, 2020, 20 (8): 04020120.
doi: 10.1061/(ASCE)GM.1943-5622.0001747 |
22 | ZENGIN H A, ISIK A H. Improvement for traditional genetic algorithm to use in optimized path finding[C]//Proc. of the International Conference on Artificial Intelligence and Applied Mathematics in Engineering, 2020, 43: 473-483. |
23 |
BANGYAL W H , AHMAS J , RAUF H T . An overview of mutation strategies in particle swarm optimization[J]. International Journal of Applied Metaheuristic Computing, 2020, 11 (4): 1- 22.
doi: 10.4018/IJAMC.2020100101 |
24 | HAYASHIDA T, NISHIZAKI I, SEKIZAKI S, et al. Improvement of particle swarm optimization focusing on diversity of the particle swarm[C]//Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2020: 191-197. |
25 | SHEORAN S , MITTAL N , GELBUKH A . Artificial bee colony algorithm in data flow testing for optimal test suite generation[J]. International Journal of System Assurance Engineering and Management, 2020, 11 (2): 340- 349. |
26 |
ZHAO C J , ZHAO H D , WANG G Z , et al. Improvement SVM classification performance of hyperspectral image using chaotic sequences in artificial bee colony[J]. IEEE Access, 2020, 8, 73947- 73956.
doi: 10.1109/ACCESS.2020.2987865 |
27 | BELKOURCHIA Y, AZRAR L, ZERIAB E. A hybrid optimization algorithm for solving constrained engineering design problems[C]//Proc. of the 5th IEEE International Conference on Optimization and Applications, 2019: 7. |
28 |
LIU Y Y , DAI J J , ZHAO S S , et al. Optimization of five- parameter BRDF model based on hybrid GA-PSO algorithm[J]. OPTIK-International Journal for Light and Electron Optics, 2020, 219, 164978.
doi: 10.1016/j.ijleo.2020.164978 |
29 |
LU Z , ZHUANG L , DONG L , et al. Model-based safety analy- sis for the fly-by-wire system by using Monte Carlo simulation[J]. Processes, 2020, 8 (1): 90.
doi: 10.3390/pr8010090 |
30 | LU Z , ZHANG Z W , ZHUANG L , et al. Reliability model of the fly-by-wire system based on stochastic petri net[J]. International Journal of Aerospace Engineering, 2019, 2019, 1- 12. |
31 | XUE Y, YAO Z Q, NIU W. The distributed dissimilar redundancy architecture of fly-by-wire flight control system[C]//Proc. of the 12th International Conference on Computational Intelligence & Security, 2016: 287-293. |
32 |
XUE Y , YAO Z Q . A way to mitigate force-fight oscillation based on pressure and position compensation for fly-by-wire flight control systems[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2020, 63 (1): 1- 7.
doi: 10.2322/tjsass.63.1 |
[1] | 吴佳伟, 宋华明, 万良琪, 黄甫, 杨加猛. 基于双响应曲面的精密产品子集模拟可靠稳健优化设计[J]. 系统工程与电子技术, 2019, 41(12): 2911-2918. |
[2] | 吕建伟, 谢宗仁, 徐一帆. 装备故障隔离模糊度要求值的确定和优化方法[J]. 系统工程与电子技术, 2016, 38(5): 1208-. |
[3] | 王永攀, 杨江平, 武高卫, 常春贺. 阵面分布不均匀的相控阵天线维修优化模型[J]. 系统工程与电子技术, 2016, 38(4): 767-772. |
[4] | 蔡忠义, 陈云翔, 项华春, 董骁雄. 基于无失效数据的加权E-Bayes可靠性评估方法[J]. 系统工程与电子技术, 2015, 37(1): 219-223. |
[5] | 杨明,张忠,方可. 权重信息不完全的仿真可信度指标聚合方法[J]. Journal of Systems Engineering and Electronics, 2013, 35(4): 885-888. |
[6] | 乐琦. 考虑主体心理行为的双边匹配决策方法[J]. Journal of Systems Engineering and Electronics, 2013, 35(1): 120-125. |
[7] | 王进玲, 曾声奎, 马纪明. 基于MCMC的模糊自适应重要抽样法[J]. Journal of Systems Engineering and Electronics, 2012, 34(2): 317-322. |
[8] | 陈希林, 肖明清, 季新源. 基于相关因素的决策优化模型建模方法[J]. Journal of Systems Engineering and Electronics, 2009, 31(7): 1667-1671. |
[9] | 张衡, 花兴来, 许绍杰. 可修复备件系统库存决策仿真优化模型[J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1510-1514. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||