1 |
GALLAGER R G . Low-density parity-check codes[J]. IRE Trans.on Information Theory, 1962, 8 (1): 21- 28.
doi: 10.1109/TIT.1962.1057683
|
2 |
MACKAY D , NEAL R M . Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 2013, 32 (18): 457- 458.
|
3 |
FAN L W, PENG K W, PAN C Y, et al. Multiple-rate multiple-length QC-LDPC codes design with near Shannon limit performance[C]//Proc. of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, 2013.
|
4 |
WU H , WANG H Y . A high throughput implementation of QC-LDPC codes for 5G NR[J]. IEEE Access, 2019, 7, 185373- 185384.
doi: 10.1109/ACCESS.2019.2960839
|
5 |
NGUYEN D T, PARK Y. Performance improvement of optical satellite communications by interleaved IEEE 802. 11 LDPC[C]//Proc. of the 10th International Conference on Ubiquitous and Future Networks, 2018: 575-579.
|
6 |
RICHARDSON T , KUDEKAR S . Design of low-density parity check codes for 5G new radio[J]. IEEE Communications Magazine, 2018, 56 (3): 28- 34.
doi: 10.1109/MCOM.2018.1700839
|
7 |
MACKAY D J C . Good error-correcting codes based on very sparse matrices[J]. IEEE Trans.on Information Theory, 1999, 45 (2): 399- 431.
doi: 10.1109/18.748992
|
8 |
SUN Z Y, ZHANG J, DU J. Research of LDPC decoding based on LLR BP algorithm[C]//Proc. of the Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 2011: 889-892.
|
9 |
KANG P , XIE Y X , YANG L , et al. Enhanced quasi-maximum likelihood decoding based on 2D modified min-sum algorithm for 5G LDPC codes[J]. IEEE Trans.on Communications, 2020, 68 (11): 6669- 6682.
doi: 10.1109/TCOMM.2020.3015213
|
10 |
CHEN J , DHOLAKIA A , ELEFTHERIOU E , et al. Reduced-complexity decoding of LDPC codes[J]. IEEE Trans.on Communications, 2005, 53 (8): 1288- 1299.
doi: 10.1109/TCOMM.2005.852852
|
11 |
MYUNG S , PARK S I , KIM K J , et al. Offset and normalized min-sum algorithms for ATSC 3. 0 LDPC decoder[J]. IEEE Trans.on Broadcasting, 2017, 63 (4): 734- 739.
doi: 10.1109/TBC.2017.2686011
|
12 |
SHRINIDHI J , KRISHNA P S , YAMUNA B , et al. Modified min sum decoding algorithm for low density parity check codes[J]. Procedia Computer Science, 2020, 171, 2128- 2136.
doi: 10.1016/j.procs.2020.04.230
|
13 |
SAVAUX V , LOUEET Y , DJOKO-KOUAM M , et al. Artificial channel aided LMMSE estimation for time-frequency selective channels in OFDM context[J]. Signal Processing, 2013, 93 (9): 2369- 2380.
doi: 10.1016/j.sigpro.2013.03.006
|
14 |
An improved low complex offset min-sum based decoding algorithm for LDPC codes[J]. Mobile Networks and Applications, 2019, 24(6): 1848-1852.
|
15 |
WANG X M , CAO W L , LI J , et al. Improved min-sum algorithm based on density evolution for low-density parity check codes[J]. IET Communications, 2017, 11 (10): 1582- 1586.
doi: 10.1049/iet-com.2017.0014
|
16 |
JAYASOORIYA S , SHIRVANIMOGHADDAM M , ONG L , et al. New density evolution approximation for LDPC and multi-edge type LDPC codes[J]. IEEE Trans.on Communications, 2016, 64 (10): 4044- 4056.
|
17 |
XU H Z , DUAN Y K , MIAO X X , et al. Girth analysis of tanner's (3, 17)-regular QC-LDPC codes based on Euclidean division algorithm[J]. IEEE Access, 2019, 7, 94917- 94930.
doi: 10.1109/ACCESS.2019.2929587
|
18 |
DAVID H A , NAGARAJA H N . Order statistics[J]. International Encyclopedia of the Social & Behavioral Sciences, 2001, 67 (339): 10897- 10901.
|
19 |
BERKES I . The law of large numbers with exceptional sets[J]. Statistics & Probability Letters, 2001, 55 (4): 431- 438.
|
20 |
NIMARA S. Reliability assessment of flooded min-sum LDPC decoders based on sub-threshold processing units[C]//Proc. of the 22nd Euromicro Conference on Digital System Design, 2019: 620-623.
|
21 |
SHARON E , LITSYN S , GOLDBERGER J . Efficient serial message-passing schedules for LDPC decoding[J]. IEEE Trans.on Information Theory, 2007, 53 (11): 4076- 4091.
doi: 10.1109/TIT.2007.907507
|
22 |
RAO K D, ANDBABU T A. Performance analysis of QC-LDPC and polar codes for eMBB in 5G systems[C]//Proc. of the International Conference on Electrical, Electronics and Computer Engineering, 2019.
|