

系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (7): 2201-2210.doi: 10.12305/j.issn.1001-506X.2022.07.16
刘乾*, 鲁云军, 陈克斌, 韩梦瑶, 郭亮
收稿日期:2021-05-28
									
				
									
				
									
				
											出版日期:2022-06-22
									
				
											发布日期:2022-06-28
									
			通讯作者:
					刘乾
												作者简介:刘乾(1989—), 男, 博士研究生, 主要研究方向为任务规划、作战仿真|鲁云军(1973—), 男, 教授, 博士, 主要研究方向为军事运筹、指挥信息系统建模与仿真|陈克斌(1987—), 男, 博士研究生, 主要研究方向为指挥信息系统体系建模、体系能力研究|韩梦瑶(1989—), 女, 博士研究生, 主要研究方向为复杂网络建模、因果网络研究|郭亮(1985—), 男, 博士研究生, 主要研究方向为军事运筹、网络信息体系建模与评估
				
							基金资助:Qian LIU*, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO
Received:2021-05-28
									
				
									
				
									
				
											Online:2022-06-22
									
				
											Published:2022-06-28
									
			Contact:
					Qian LIU   
												摘要:
针对复杂作战任务分解中存在的随意性、不确定性问题, 综合考虑任务主体能力属性和结构特征等二元约束, 提出了一种由子任务集提取(extraction, E)、约束检验(verification, V)、子任务集调整(adjustment, A)等步骤递进循环形成的任务分解EVA方法。首先, 构建了全局任务空间, 提出基于任务匹配的子任务集提取方法; 其次, 针对任务主体能力属性和结构特征的二元约束, 建立了子任务集调整模型, 通过改进精英保留策略, 引入任务分解粒度和交叉变异概率动态调整策略, 提出了一种引进的非支配排序遗传算法-Ⅱ(improved non-dominated sorting genetic algorithm-Ⅱ, INSGA-Ⅱ)算法; 最后, 进行仿真实验, 验证了算法相较于传统多目标优化算法在解集多样性、收敛性和时间性能上的优势。研究结果表明, 所提方法能够使决策者依据任务主体实际自主调控任务分解结果, 在一定程度上克服了传统方法过度依赖主观经验, 忽略任务主体能力属性、结构特征约束的问题。
中图分类号:
刘乾, 鲁云军, 陈克斌, 韩梦瑶, 郭亮. 任务主体二元约束下作战任务分解EVA方法[J]. 系统工程与电子技术, 2022, 44(7): 2201-2210.
Qian LIU, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO. Combat task decomposition EVA method based on binary constraints of task subject[J]. Systems Engineering and Electronics, 2022, 44(7): 2201-2210.
表3
支持度矩阵"
| 任务T | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13 | 
| T1 | 0 | 0.233 1 | 0 | 0.423 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| T2 | 0.233 1 | 0 | 0.287 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| T3 | 0 | 0.287 7 | 0 | 0 | 0.611 2 | 0.643 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| T4 | 0.423 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.701 7 | 0.685 4 | 0 | 0 | 
| T5 | 0 | 0 | 0.611 2 | 0 | 0 | 0 | 0.621 6 | 0 | 0 | 0 | 0 | 0 | 0 | 
| T6 | 0 | 0 | 0.643 6 | 0 | 0 | 0 | 0.725 9 | 0 | 0 | 0 | 0 | 0 | 0 | 
| T7 | 0 | 0 | 0 | 0 | 0.621 6 | 0.725 9 | 0 | 0.340 9 | 0 | 0 | 0 | 0 | 0 | 
| T8 | 0 | 0 | 0 | 0 | 0 | 0 | 0.340 9 | 0 | 0.823 3 | 0 | 0 | 0 | 0 | 
| T9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.823 3 | 0 | 0 | 0 | 0 | 0 | 
| T10 | 0 | 0 | 0 | 0.701 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.428 5 | 0 | 
| T11 | 0 | 0 | 0 | 0.685 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.470 2 | 0 | 
| T12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.428 5 | 0.470 2 | 0 | 0.852 8 | 
| T13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.852 8 | 0 | 
表5
任务能力需求矩阵"
| 能力C | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | 
| T1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 
| T2 | 0 | 0 | 0 | 10 | 13 | 10 | 6 | 0 | 0 | 0 | 
| T3 | 0 | 0 | 0 | 11 | 15 | 13 | 0 | 0 | 0 | 0 | 
| T4 T10 | 0 | 0 | 0 | 20 | 14 | 12 | 0 | 0 | 0 | 0 | 
| T5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 
| T6 T7 | 0 | 0 | 0 | 8 | 6 | 10 | 0 | 4 | 0 | 10 | 
| T8 T9 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 10 | 6 | 
| T11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 
| T12 T13 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 6 | 
| T14 T17 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| T15 T18 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| T16 T19 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
表7
RT量化调整结果"
| 序号 | 量化调整结果 | MDinner | MDinter | 
| 1 | {1, 2, 3, 1, 3, 3, 4, 1, 1} | 0.373 6 | 0.015 4 | 
| 2 | {1, 1, 2, 3, 2, 2, 4, 3, 3} | 0.451 0 | 0.017 5 | 
| 3 | {1, 1, 2, 1, 2, 2, 3, 1, 4} | 0.529 1 | 0.024 3 | 
| 4 | {1, 2, 2, 1, 2, 2, 3, 1, 4} | 0.566 7 | 0.024 5 | 
| 5 | {1, 1, 2, 1, 2, 2, 3, 1, 4} | 0.578 6 | 0.025 5 | 
| 6 | {1, 1, 1, 2, 1, 1, 3, 2, 4} | 0.586 7 | 0.028 7 | 
| 7 | {1, 1, 1, 2, 1, 1, 3, 1, 4} | 0.623 9 | 0.046 5 | 
| 8 | {1, 1, 1, 1, 1, 2, 3, 1, 4} | 0.628 6 | 0.050 2 | 
| 1 |  
											  曹裕华, 冯书兴, 徐雪峰.  作战任务分解的概念表示方法研究[J]. 计算机仿真, 2007, 24 (8): 1- 4. 
											 												 doi: 10.3969/j.issn.1006-9348.2007.08.001  | 
										
|  
											   CAO Y H ,  FENG S X ,  XU X F .  Research on conception representation of operational mission break[J]. Computer Simulation, 2007, 24 (8): 1- 4. 
											 												 doi: 10.3969/j.issn.1006-9348.2007.08.001  | 
										|
| 2 | GAELE S , BRUNO M , DOMINIQUE F . Goal decomposition tree: an agent model to generate a validated agent behavior[J]. Lecture Notes in Computer Science, 2006, 39 (4): 124- 140. | 
| 3 | 张维明, 刘忠, 阳东升, 等. 体系工程理论与方法[M]. 北京: 科学出版社, 2010. | 
| ZHANG W M , LIU Z , YANG D S , et al. System engineering theory and method[M]. Beijing: Science Press, 2010. | |
| 4 | 董涛, 刘付显, 李响. 内聚度和粒度在作战任务分解评估中的应用[J]. 电光与控制, 2012, 19 (12): 14- 17. | 
| DONG T , LIU F X , LI X . Cohesion and granularity applied in task decomposition evaluation for operations[J]. Electronics Optics & Control, 2012, 19 (12): 14- 17. | |
| 5 | PANG Z L , WANG G Y , YANG J . A multi-granularity decomposition mechanism of complex tasks based on density peaks[J]. Big Data Mining and Analytics, 2018, 1 (2): 245- 256. | 
| 6 |  
											   LIU A J ,  PFUND M ,  FOWLER J .  Scheduling optimization of task allocation in integrated manufacturing system based on task decomposition[J]. Journal of Systems Engineering and Electronics, 2016, 27 (2): 422- 433. 
											 												 doi: 10.1109/JSEE.2016.00043  | 
										
| 7 | ZOU Z G , CHEN W F , WANG S S , et al. Role-based approaches for operational tasks modeling and flexible decomposition[J]. Journal of Systems Engineering and Electronics, 2016, 26 (6): 1191- 1206. | 
| 8 | KARNIEL A , REICH Y . Formalizing a workflow-net implementation of design structure matrix based process planning for new product development[J]. IEEE Trans.on Systems, Man and Cybernetics-Part A: Systems and Humans, 2011, 47 (3): 476- 491. | 
| 9 | YANG Q , YAO T , LU T , et al. An overlapping-based design structure matrix for measuring interaction strength and clustering analysis in product development project[J]. IEEE Trans.on Engineering Managemen, 2014, 6 (1): 159- 170. | 
| 10 |  
											   SON S ,  KIM J H ,  LEE J W , et al.  Improving supply chain management process using design structure matrix based cross-functional analysis[J]. Systems Engineering, 2019, 22 (4): 313- 329. 
											 												 doi: 10.1002/sys.21484  | 
										
| 11 |  
											   RAMEZANIA R ,  SEDAGHAT Y .  A decomposition-based reliability and makespan optimization technique for hardware task graphs[J]. Reliability Engineering and System Safety, 2018, 180, 13- 24. 
											 												 doi: 10.1016/j.ress.2018.07.007  | 
										
| 12 | LIU W J, JI J, YANG Y M. Capability-based design task decomposition in heavy military vehicle collaborative development process[C]//Proc. of the 28th International Academy for Production Engineering Design Conference, 2018: 13-18. | 
| 13 |  
											   VILLOTA W ,  GIRONZA M ,  ORDONEZ A .  On the feasibility of using hierarchical task networks and network functions virtualization for managing software-defined networks[J]. IEEE Access, 2018, 6, 38026- 38040. 
											 												 doi: 10.1109/ACCESS.2018.2852649  | 
										
| 14 |  
											   WISNIEWSKIA R ,  KARATKEVICH A .  Decomposition of distributed edge systems based on the Petri nets and linear algebra technique[J]. Journal of Systems Architecture, 2019, 96, 20- 31. 
											 												 doi: 10.1016/j.sysarc.2019.01.015  | 
										
| 15 |  
											   CHITTILAPPILLY A I ,  CHEN L ,  AMER-UAHIA S .  A survey of general-purpose crowdsourcing techniques[J]. IEEE Trans.on Knowledge and Data Engineering, 2016, 28 (9): 2246- 2266. 
											 												 doi: 10.1109/TKDE.2016.2555805  | 
										
| 16 | WATANABE C , HIRAMATSU K , KASHINO K . Knowledge discovery from layered neural networks based on non-negative task matrix decomposition[J]. IEICE Trans.on Information and Systems, 2020, E103D (2): 390- 397. | 
| 17 |  
											   RYAN K L ,  LEE E W ,  LEE S G .  Business-OWL (BOWL)-a hierarchical task network ontology for dynamic business process decomposition and formulation[J]. IEEE Trans.on Services Computing, 2012, 5 (2): 246- 259. 
											 												 doi: 10.1109/TSC.2011.48  | 
										
| 18 |  
											   QI C ,  WANG D .  Dynamic aircraft carrier flight deck task planning based on HTN[J]. IFAC-Papers Online, 2016, 49 (12): 1608- 1613. 
											 												 doi: 10.1016/j.ifacol.2016.07.810  | 
										
| 19 |  
											  邵天浩, 张宏军, 程恺, 等.  层次任务网络中的重新规划研究综述[J]. 系统工程与电子技术, 2020, 42 (12): 2833- 2846. 
											 												 doi: 10.3969/j.issn.1001-506X.2020.12.21  | 
										
|  
											   SHAO T H ,  ZHANG H J ,  CHENG K , et al.  Review of replanning in hierarchical task network[J]. Systems Engineering and Electronics, 2020, 42 (12): 2833- 2846. 
											 												 doi: 10.3969/j.issn.1001-506X.2020.12.21  | 
										|
| 20 |  
											   SHAO T H ,  ZHANG H J ,  CHENG K , et al.  The hierarchical task network planning method based on Monte Carlo tree search[J]. Knowledge-Based Systems, 2021, 225, 107067. 
											 												 doi: 10.1016/j.knosys.2021.107067  | 
										
| 21 | 余加振. 基于OOR框架的作战任务分析方法研究[D]. 长沙: 国防科学技术大学, 2010. | 
| YU J Z. Reseach on approach of operational task analysis based on OOR framework[D]. Changsha: National University of Defense Technology, 2010. | |
| 22 |  
											   XU X ,  JU R S ,  LIU X C , et al.  Extending HTN to planning and execution control for small combat unit simulation[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2017, 8 (2): 1750032. 
											 												 doi: 10.1142/S1793962317500325  | 
										
| 23 | LEE S M. Hierarchical planning knowledge for refining partial-order plans[D]. Bethlehem: Lehigh University, 2012. | 
| 24 | U.S. Joint Chiefs of Staff. Universal joint task Manual[R]. Virginia Arlington: Chairman of Joint Chiefs of Staff, 2011: B-A-1. | 
| 25 |  
											   ASHYAP N ,  KUMARI A C ,  CHHIKARA R .  Multiobjective optimization using NSGA-Ⅱ for service composition in IoT[J]. Procedia Computer Science, 2020, 167, 1928- 1933. 
											 												 doi: 10.1016/j.procs.2020.03.214  | 
										
| 26 |  
											   XU X Q ,  YANG K W ,  DOU Y J , et al.  High-end equipment development task decomposition and scheme selection method[J]. Journal of Systems Engineering and Electronics, 2021, 32 (1): 118- 135. 
											 												 doi: 10.23919/JSEE.2021.000012  | 
										
| 27 |  
											   ZHANG L ,  GE H J ,  MA Y , et al.  Multi-objective optimization design of a notch filter based on improved NSGA-Ⅱ for conducted emissions[J]. IEEE Access, 2020, 8, 83213- 83223. 
											 												 doi: 10.1109/ACCESS.2020.2991576  | 
										
| 28 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826. | 
| 29 |  
											   CHEN K B ,  LU Y J ,  LIU Q , et al.  A method to validate operational capability index model of heterogeneous combat networks based on characteristic topology analysis[J]. IEEE Access, 2020, 8, 59760- 59773. 
											 												 doi: 10.1109/ACCESS.2020.2983082  | 
										
| 30 | 夏博远, 杨克巍, 杨志伟, 等. 基于杀伤网评估的装备组合多目标优化[J]. 系统工程与电子技术, 2021, 43 (2): 399- 409. | 
| XIA B Y , YANG K W , YANG Z W , et al. Multi-objective optimization of equipment portfolio based on kill-web evaluation[J]. Systems Engineering and Electronics, 2021, 43 (2): 399- 409. | |
| 31 | LI J, CHEN J, XIN B, et al. Solving multi-objective multi-stage weapon target assignment problem via adaptive NSGA-Ⅱ and adaptive MOEA/D: a comparison study[C]//Proc. of the IEEE Congress on Evolutionary Computation, 2015: 3132-3139. | 
| [1] | 闫世瑛, 颜克斐, 方伟, 陆恒杨. 基于差分进化邻域自适应的大规模多目标算法[J]. 系统工程与电子技术, 2022, 44(7): 2112-2124. | 
| [2] | 来磊, 邹鲲, 吴德伟, 李保中. 交互策略改进MOFA进化的多UAV协同航迹规划[J]. 系统工程与电子技术, 2021, 43(8): 2282-2289. | 
| [3] | 崔荣伟, 韩维, 苏析超, 王立国, 刘玉杰. 舰载机甲板机务勤务保障作业调度与资源配置集成优化[J]. 系统工程与电子技术, 2021, 43(7): 1884-1893. | 
| [4] | 周晶, 赵晓哲, 许震, 林众, 张晓盼. 基于D-NSGA-Ⅲ算法的无人机群高维多目标任务分配方法[J]. 系统工程与电子技术, 2021, 43(5): 1240-1247. | 
| [5] | 夏博远, 杨克巍, 杨志伟, 张小可, 赵丹玲. 基于杀伤网评估的装备组合多目标优化[J]. 系统工程与电子技术, 2021, 43(2): 399-409. | 
| [6] | 田春明, 杨安, 叶乐, 李建星, 贺雨晨. 基于贝叶斯算法的天线端到端优化[J]. 系统工程与电子技术, 2021, 43(12): 3413-3419. | 
| [7] | 来磊, 吴德伟, 邹鲲, 韩昆, 李海林. 基于多准则交互膜进化算法的UAV三维航迹规划[J]. 系统工程与电子技术, 2021, 43(1): 138-146. | 
| [8] | 王亚东, 石全, 夏伟, 陈材. 基于超启发式算法的备件供应网络结构优化[J]. 系统工程与电子技术, 2020, 42(3): 620-629. | 
| [9] | 丁春山. 传感器管理技术研究现状与展望[J]. 系统工程与电子技术, 2020, 42(12): 2761-2770. | 
| [10] | 马武彬, 王锐, 王威超, 吴亚辉, 邓苏, 黄宏斌. 基于进化多目标优化的微服务组合部署与调度策略[J]. 系统工程与电子技术, 2020, 42(1): 90-100. | 
| [11] | 李瑞阳, 王智学, 禹明刚, 何红悦. 基于鲁棒能力的体系多目标组合优化[J]. 系统工程与电子技术, 2019, 41(5): 1034-1042. | 
| [12] | 孙鹏, 武君胜, 王勋, 焦志强, 张杰勇. 基于多目标优化的C2组织平台资源动态调度方法[J]. 系统工程与电子技术, 2019, 41(4): 793-800. | 
| [13] | 褚骁庚, 马政伟, 陈行军. 面向多目标优化火力目标分配问题的前瞻式边际贪婪算法[J]. 系统工程与电子技术, 2019, 41(10): 2252-2259. | 
| [14] | 徐浩, 邢清华, 王伟. 基于模糊多目标规划的防空反导火力分配[J]. 系统工程与电子技术, 2018, 40(3): 563-570. | 
| [15] | 李志亮, 李小将, 张东来. 基于改进DE算法的敏捷成像卫星前摄式调度[J]. 系统工程与电子技术, 2018, 40(2): 353-359. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||