系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (7): 2096-2103.doi: 10.12305/j.issn.1001-506X.2022.07.04
朱峰, 杨啸*, 蒋倩倩, 王宇轩
收稿日期:
2021-09-24
出版日期:
2022-06-22
发布日期:
2022-06-28
通讯作者:
杨啸
作者简介:
朱峰 (1963—), 男, 教授, 博士, 主要研究方向为电磁环境测试、电磁干扰分析、电磁兼容性分析与设计|杨啸 (1996—), 男, 硕士研究生, 主要研究方向为电磁干扰分析|蒋倩倩 (1994—), 女, 硕士研究生, 主要研究方向为电磁干扰分析和信号处理|王宇轩 (1998—), 男, 硕士研究生, 主要研究方向为电磁干扰分析
基金资助:
Feng ZHU, Xiao YANG*, Qianqian JIANG, Yuxuan WANG
Received:
2021-09-24
Online:
2022-06-22
Published:
2022-06-28
Contact:
Xiao YANG
摘要:
为了研究磁浮列车离线电弧对机场航向信标的影响, 选取了国内某磁浮线路离线电弧现象发生频繁的分段绝缘器处, 对列车的电磁辐射进行了测试。结合现场测试数据, 在电磁场仿真软件FEKO中搭建了磁浮列车及轨道模型, 分析了离线电弧在轨道和车体电磁屏蔽作用下的电场分布特性。之后,通过最小二乘的线性回归方法, 得到离线电弧在航向信标频段内的幅频特性。在此基础上,结合电波传播理论及GB 6364的相关要求, 以磁浮线路与机场跑道延长线平行、线路垂直下穿跑道两种情况为例, 分析了离线电弧电磁辐射对航向信标的影响。研究结果表明,磁浮线路下穿机场的情况下, 飞机着陆过程中接收信号信噪比满足标准规定的20 dB防护率要求; 磁浮线路与机场跑道延长线平行的情况下, 两者间距小于86.4 m时, 离线电弧可能会对航向信标造成影响。研究结果可为磁浮线路与机场间的电磁兼容性设计提供理论依据。
中图分类号:
朱峰, 杨啸, 蒋倩倩, 王宇轩. 磁浮列车电弧辐射特性及对航向信标影响分析[J]. 系统工程与电子技术, 2022, 44(7): 2096-2103.
Feng ZHU, Xiao YANG, Qianqian JIANG, Yuxuan WANG. Analysis of arc radiation characteristics of maglev train and its influence on localizer[J]. Systems Engineering and Electronics, 2022, 44(7): 2096-2103.
1 | 谢海林. 中低速磁浮交通系统工程化应用: 长沙磁浮快线[M]. 北京: 中国铁道出版社, 2018: 10- 15. |
XIE H L . Engineering application of medium and low speed maglev transportation system: Changsha maglev express[M]. Beijing: China Railway Press, 2018: 10- 15. | |
2 | 朱峰, 翁文雯, 谢雨轩, 等. 多径效应对航向信标系统电磁环境影响分析[J]. 系统工程与电子技术, 2019, 41 (12): 2703- 2709. |
ZHU F , WENG W W , XIE Y X , et al. Analysis of influence of multipath effect on electromagnetic environment of localizer[J]. Systems Engineering and Electronics, 2019, 41 (12): 2703- 2709. | |
3 |
LI Z H , TAN J D , GUO Q , et al. A parallel CE-LOD-FDTD model for instrument landing system signal disturbance analyzing[J]. IEEE Trans.on Antennas and Propagation, 2019, 67 (4): 2503- 2512.
doi: 10.1109/TAP.2019.2891294 |
4 | GEISE R, KERFIN O, NEUBAUER B, et al. EMC analysis including receiver characteristics-pantograph arcing and the instrument landing system[C]//Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2015: 1213-1217. |
5 |
TANG Y T , ZHU F , CHEN Y Y . Research on the influence of train speed change on the EMI of pantograph-catenary arc to main navigation stations[J]. Applied Computational Electromagnetics Society Journal, 2021, 36 (4): 450- 457.
doi: 10.47037/2020.ACES.J.360411 |
6 |
LU N , ZHU F , XIAO Y C , et al. The research on EMI of high-speed railway to NDB[J]. IEEE Trans.on Electromagnetic Compatibility, 2021, 63 (3): 692- 701.
doi: 10.1109/TEMC.2020.3032133 |
7 |
马云双, 刘志刚, 马岚, 等. 动车组弓网离线放电电磁骚扰源模型研究[J]. 中国铁道科学, 2013, 34 (5): 76- 81.
doi: 10.3969/j.issn.1001-4632.2013.05.12 |
MA Y S , LIU Z G , MA L , et al. Electromagnetic disturbance source model of discharge upon pantograph-catenary disconnection of EMU[J]. China Railway Science, 2013, 34 (5): 76- 81.
doi: 10.3969/j.issn.1001-4632.2013.05.12 |
|
8 |
BRUNO O , LANDI A , PAPI M , et al. Phototube sensor for monitoring the quality of current collection on overhead electrified railways[J]. Proceedings of the Institution of Mechanical Engineers, Part F, 2001, 215 (3): 231- 241.
doi: 10.1243/0954409011531549 |
9 |
MIDYA S . Pantograph arcing in electrified railways-mechanism and influence of various Parameters-Part I: with DC traction power supply[J]. IEEE Trans.on Power Delivery, 2009, 24 (4): 1931- 1939.
doi: 10.1109/TPWRD.2009.2021035 |
10 |
KARADIMOU E . Test of rolling stock electromagnetic compatibility for cross-domain interoperability[J]. IET Intelligent Transport Systems, 2016, 10 (1): 10- 16.
doi: 10.1049/iet-its.2015.0044 |
11 | 陈旭坤, 曹保江, 刘耀银, 等. 高速气流场下列车弓网电弧动态模型[J]. 高电压技术, 2016, 42 (11): 3593- 3600. |
CHEN X K , CAO B J , LIU Y Y , et al. Dynamic model of pantograph-catenary arc of train in high speed air-flow field[J]. High Voltage Engineering, 2016, 42 (11): 3593- 3600. | |
12 |
雷栋, 张婷婷, 段绪伟, 等. 列车运行速度对弓网电弧电气特性的影响研究[J]. 铁道学报, 2019, 41 (7): 50- 56.
doi: 10.3969/j.issn.1001-8360.2019.07.007 |
LEI D , ZHANG T T , DUAN X W , et al. Study on influence of train speed on electrical characteristics of pantograph-cate nary arc[J]. Journal of the China Railway Society, 2019, 41 (7): 50- 56.
doi: 10.3969/j.issn.1001-8360.2019.07.007 |
|
13 | 杨晓嘉, 朱峰, 邱日强, 等. 弓网电弧辐射特性及对机场下滑信标的影响[J]. 航空学报, 2018, 39 (1): 253- 260. |
YANG X J , ZHU F , QIU R Q , et al. Radiation characteristics of pantograph-catenary arc and its influence on airport glide beacon[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (1): 253- 260. | |
14 |
朱峰, 唐毓涛, 高晨轩. 弓网离线电弧对CRH380BL型动车组速度传感器的电磁干扰机理及抑制[J]. 中国铁道科学, 2016, 37 (6): 69- 74.
doi: 10.3969/j.issn.1001-4632.2016.06.09 |
ZHU F , TANG Y T , GAO C X . Mechanism and suppression of electromagnetic interference of pantograph-catenary arc to speed sensor of CRH380BL electric multiple unit[J]. China Railway Science, 2016, 37 (6): 69- 74.
doi: 10.3969/j.issn.1001-4632.2016.06.09 |
|
15 | 马云双, 高国强, 朱光亚. 高速列车弓网电弧温度场特性仿真研究[J]. 高电压技术, 2015, 41 (11): 3597- 3603. |
MA Y S , GAO G Q , ZHU G Y . Numerical simulation and analysis of temperature distribution of pantograph-catenary ARC characteristics of high-speed train[J]. High Voltage Engineering, 2015, 41 (11): 3597- 3603. | |
16 |
LIU Y , CHANG G W , HUANG H M . Mayr's equation-based model for pantograph arc of high-speed railway traction system[J]. IEEE Trans.on Power Delivery, 2010, 25 (3): 2025- 2027.
doi: 10.1109/TPWRD.2009.2037521 |
17 | LIU Z G , ZHOU H Y , HUANG K , et al. Extended black-box model of pantograph-catenary detachment arc considering pantograph-catenary dynamics in electrified railway[J]. Journal of Biotechnology, 2019, 55 (1): 776- 785. |
18 |
GAO G Q , YAN X , YANG Z F , et al. Pantograph-catenary arcing detection based on electromagnetic radiation[J]. IEEE Trans.on Electromagnetic Compatibility, 2019, 61 (4): 983- 989.
doi: 10.1109/TEMC.2018.2841050 |
19 |
潘孟春, 陈棣湘, 罗飞路, 等. 常导高速磁悬浮列车电磁场的分析与测量[J]. 铁道学报, 2004, 26 (4): 126- 128.
doi: 10.3321/j.issn:1001-8360.2004.04.026 |
PAN M C , CHEN D X , LUO F L , et al. Electromagnetic field analysis and measurement of the high speed normal magnetic levitation vehicle system[J]. Journal of the China Railway Society, 2004, 26 (4): 126- 128.
doi: 10.3321/j.issn:1001-8360.2004.04.026 |
|
20 | 李天石, 龚孟荣, 黄辉, 等. 中低速磁浮与轮轨交通系统电磁环境影响差异性分析[J]. 铁道通信信号, 2021, 57 (2): 53- 57. |
LI T S , GONG M R , HUANG H , et al. Difference analysis of electromagnetic environment effects between wheel-rail transit and high-speed surface transport[J]. Railway Signalling & Communication, 2021, 57 (2): 53- 57. | |
21 | 魏波, 虞凯, 段永奇. 中低速磁浮对高铁GSM-R通信系统的电磁干扰影响研究[J]. 铁道通信信号, 2015, 51 (7): 48- 52. |
WEI B , YU K , DUAN Y Q . Electromagnetic interference influence of low & middle speed maglev train on high-speed railway GSM-R communication system[J]. Railway Signalling & Communication, 2015, 51 (7): 48- 52. | |
22 | GB/T 24338-2011. 轨道交通电磁兼容[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2011. |
GB/T 24338-2011. Rail transit electromagnetic compatibility[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2011. | |
23 |
程瑞庭. 电波传播模型ITU-R P.526及多刃峰绕射研究[J]. 中国无线电, 2006, (10): 51- 53.
doi: 10.3969/j.issn.1672-7797.2006.10.017 |
CHENG R T . Radio wave propagation model ITU-R P.526 and multi edge diffraction[J]. China Radio, 2006, (10): 51- 53.
doi: 10.3969/j.issn.1672-7797.2006.10.017 |
|
24 | 马卫华, 罗世辉, 张敏, 等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报, 2021, 21 (1): 199- 216. |
MA W H , LUO S H , ZHANG M , et al. Research review of medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21 (1): 199- 216. | |
25 |
舒斯龙. 城市轨道交通分段绝缘器打火拉弧的分析[J]. 科技风, 2014, (9): 48- 49.
doi: 10.3969/j.issn.1671-7341.2014.09.042 |
SHU S L . Analysis of urban mass transit's arcing segment insulator ignition[J]. Technology Wind, 2014, (9): 48- 49.
doi: 10.3969/j.issn.1671-7341.2014.09.042 |
|
26 | 苗强, 吴德伟, 毛玉泉, 等. 仪表着陆系统建模与仿真[J]. 火力与指挥控制, 2009, 34 (6): 96- 99. |
MIAO Q , WU D W , MAO Y Q , et al. Modeling and simulation of instrument landing system[J]. Fire Control and Command Control, 2009, 34 (6): 96- 99. | |
27 | 王双, 姜春英, 康玉祥, 等. 仪表着陆系统的航道调整仿真系统研究[J]. 电子测量与仪器学报, 2020, 34 (8): 174- 180. |
WANG S , JIANG C Y , KANG Y X , et al. Research on chan nel adjustment simulation system of instrument landing system[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34 (8): 174- 180. | |
28 |
QU C Q . Research on signal of field monitor of 7 220A localizer beacon subsystem of ILS[J]. Open Journal of Antennas and Propagation, 2015, 3 (4): 37- 50.
doi: 10.4236/ojapr.2015.34005 |
29 | 孙进平, 王俊, 张玉玺, 等. 民航飞机无线电设备[M]. 北京: 北京航空航天大学出版社, 2016: 116- 118. |
SUN J P , WANG J , ZHANG Y X , et al. Radio equipment for civil aviation aircraft[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2016: 116- 118. | |
30 | 魏光兴. 通信, 导航, 监视设施[M]. 成都: 西南交通大学出版社, 2004: 95- 105. |
WEI G X . Communication, navigation and monitoring facilities[M]. Chengdu: Southwest Jiaotong University Press, 2004: 95- 105. |
[1] | 金韬, 朱迪, 何杰颖, 王文煜. 星载太赫兹高频段大气背景辐射特性研究[J]. 系统工程与电子技术, 2022, 44(10): 3003-3011. |
[2] | 刘永征, 刘学斌, 刘文龙, 张昕, 陈小来. 高光谱遥感高速成像电路电磁兼容设计[J]. 系统工程与电子技术, 2021, 43(1): 26-32. |
[3] | 张玉廷, 肖淼, 张亮, 周怀安, 吕争. 基于近场扫描的移动通信卫星EMC性能评估[J]. 系统工程与电子技术, 2020, 42(9): 1897-1902. |
[4] | 卢中昊, 徐军, 林铭团. 电磁辐射发射现场测试中基于空域对消的背景电磁干扰抑制方法[J]. 系统工程与电子技术, 2020, 42(7): 1433-1438. |
[5] | 朱峰, 翁文雯, 谢雨轩, 杨晓嘉, 叶家全. 多径效应对航向信标系统电磁环境影响分析[J]. 系统工程与电子技术, 2019, 41(12): 2703-2709. |
[6] | 吴礼, 彭树生, 肖泽龙, 许建中. 用于目标辐射特性测量的W波段辐射计[J]. 系统工程与电子技术, 2016, 38(7): 1502-1507. |
[7] | 卢中昊, 林铭团, 刘继斌, 刘培国. 基于阵列信号处理的新型虚拟暗室测试方法[J]. 系统工程与电子技术, 2013, 35(10): 2021-2026. |
[8] | 秦德淳, 苏东林, 武南开, 吴龙刚. 基于谐振效应的电子起爆装置电磁敏感性分析方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2005-2009. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||