系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (5): 1433-1438.doi: 10.12305/j.issn.1001-506X.2022.05.01

• 电子技术 •    下一篇

基于NMF与CNN联合优化的声学场景分类

韦娟1,*, 杨皇卫1, 宁方立2   

  1. 1. 西安电子科技大学通信工程学院, 陕西 西安 710071
    2. 西北工业大学机电学院, 陕西 西安 710072
  • 收稿日期:2021-05-28 出版日期:2022-05-01 发布日期:2022-05-16
  • 通讯作者: 韦娟
  • 作者简介:韦娟(1973—), 女, 教授, 博士, 主要研究方向为声源定位、音频识别|杨皇卫(1997—), 男, 硕士研究生, 主要研究方向为声场景分类|宁方立(1974—), 男, 教授, 博士, 主要研究方向为声源定位
  • 基金资助:
    国家自然科学基金(52075441);陕西省重点研发计划(2018GY-181);陕西省重点研发计划(2020ZDLGY06-09)

Acoustic scene classification based on joint optimization of NMF and CNN

Juan WEI1,*, Huangwei YANG1, Fangli NING2   

  1. 1. School of Communication Engineering, Xidian University, Xi'an 710071, China
    2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2021-05-28 Online:2022-05-01 Published:2022-05-16
  • Contact: Juan WEI

摘要:

针对声学场景分类任务中复杂声学环境的特征表示问题, 提出一种联合训练特征提取和分类模型的优化算法。将非负矩阵分解与卷积神经网络的训练相结合, 利用网络的损失值实现对特征提取和网络参数的共同更新, 以学习到更具判别性的有监督特征。在TUT2017数据集上提取对数声谱图作为基础特征, 搭建深度卷积神经网络进行实验验证。仿真结果表明, 所提算法的识别准确率相比优化前提升3.9%, 且优于其他两种常用声学特征, 证明该算法能够有效提升整体分类效果。

关键词: 特征学习, 非负矩阵分解, 卷积神经网络, 联合优化

Abstract:

To solve the problem of feature representation of complex acoustic environment in acoustic scene classification task, an optimization algorithm of joint training feature extraction and classification model is proposed. In order to learn more discriminative and supervised features, non-negative matrix factorization is combined with convolution neural network training, and the loss value of network is used to realize feature extraction and network parameters updating. The logarithmic spectrogram is extracted from the TUT2017 dataset as the basic feature. And the deep convolutional neural network is built for experimental verification.The simulation results show that the recognition accuracy of the proposed algorithm is improved by 3.9% compared with that before optimization, and is superior to the other two commonly used acoustic features, which proves that the algorithm can effectively improve the overall classification effect.

Key words: feature learning, non-negative matrix factorization, convolutional neural network, joint optimization

中图分类号: