1 |
PASEDDULA C , GANGASHETTY S V . Late fusion framework for acoustic scene classification using LPCC, SCMC, and log-Mel band energies with deep neural networks[J]. Applied Acoustics, 2021, 172, 107568.
doi: 10.1016/j.apacoust.2020.107568
|
2 |
刘立芳, 杨海霞, 齐小刚. 基于线性判别分析的时频域特征提取算法[J]. 系统工程与电子技术, 2019, 41 (10): 2184- 2190.
doi: 10.3969/j.issn.1001-506X.2019.10.05
|
|
LIU L F , YANG H X , QI X G . Time-frequency domain feature extraction algorithm based on linear discriminant analysis[J]. Systems Engineering and Electronics, 2019, 41 (10): 2184- 2190.
doi: 10.3969/j.issn.1001-506X.2019.10.05
|
3 |
MCDONNELL M D, GAO W. Acoustic scene classification using deep residual networks with late fusion of separated high and low frequency paths[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020.
|
4 |
SONG H W, HAN J Q, DENG S W, et al. Acoustic scene classification by implicitly identifying distinct sound events[C]//Proc. of the Interspeech, 2019: 3860-3864.
|
5 |
WANG M, WANG R, ZHANG X L, et al. Hybrid constant-Q transform based CNN ensemble for acoustic scene classification[C]//Proc. of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, 2019: 1511-1516.
|
6 |
BISOT V , SERIZEL R , ESSID S , et al. Feature learning with matrix factorization applied to acoustic scene classification[J]. IEEE/ACM Trans.on Audio Speech & Language Processing, 2017, 25 (6): 1216- 1229.
|
7 |
SPRECHMANN P, BRONSTEIN A M, SAPIRO G. Supervised non-euclidean sparse NMF via bilevel optimization with applications to speech enhancement[C]//Proc. of the Hands-free Speech Communication and Microphone Arrays, 2014: 11-15.
|
8 |
PODWINSKA Z, SOBIERAJ I, FAZENDA B M, et al. Acoustic event detection from weakly labeled data using auditory salience[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2019.
|
9 |
姚琨, 杨吉斌, 张雄伟, 等. 基于多分辨率时频特征融合的声学场景分类[J]. 声学技术, 2020, 39 (4): 108- 114.
|
|
YAO K , YANG J B , ZHANG X W , et al. Acoustic scene classification based on multi-resolution time-frequency feature fusion[J]. Acoustic Technology, 2020, 39 (4): 108- 114.
|
10 |
LEE S , PANG H S . Feature extraction based on the non-negative matrix factorization of convolutional neural networks for monitoring domestic activity with acoustic signals[J]. IEEE Access, 2020, 8, 122384- 122395.
doi: 10.1109/ACCESS.2020.3007199
|
11 |
BISOT V, SERIZEL R, ESSID S, et al. Supervised non-negative matrix factorization for acoustic scene classification[C]//Proc. of the IEEE International Evaluation Campaign on Detection and Classification of Acousitc Scenes and Events, 2016.
|
12 |
SALAMON J , BELLOJ P . Deep convolutional neural networks and data augmentation for environmental sound classification[J]. IEEE Signal Processing Letters, 2017, 24 (3): 279- 283.
doi: 10.1109/LSP.2017.2657381
|
13 |
杨浩聪, 史创, 李会勇. 保留立体声相位信息的声音场景分类系统[J]. 信号处理, 2020, 36 (6): 871- 878.
|
|
YANG H C , SHI C , LI H Y . Sound scene classification system preserving stereo phase information[J]. Signal Processing, 2020, 36 (6): 871- 878.
|
14 |
BODDAPATI V , PETEF A , RASMUSSON J , et al. Classifying environmental sounds using image recognition networks[J]. Procedia Computer Science, 2017, 112, 2048- 2056.
doi: 10.1016/j.procs.2017.08.250
|
15 |
DOAN T, NGUYEN H, NGO D T, et al. Acoustic scene classification using adeeper training method for convolution neural network[C]//Proc. of the International Symposium on Electrical and Electronics Engineering, 2019: 63-67.
|
16 |
曹毅, 黄子龙, 张威, 等. N-DenseNet的城市声音事件分类模型[J]. 西安电子科技大学学报, 2019, 46 (6): 9- 16.9-16, 94
|
|
CAO Y , HUANG Z L , ZHANG W , et al. Urban sound event classification model based on N-DenseNet[J]. Journal of Xidian University, 2019, 46 (6): 9- 16.9-16, 94
|
17 |
李伟, 李硕. 理解数字声音——基于一般音频/环境声的计算机听觉综述[J]. 复旦学报(自然科学版), 2019, 58 (3): 269- 313.
|
|
LI W , LI S . Understanding digital sound: a review of computer hearing based on general audio/ambient sound[J]. Journal of Fudan University (Natural Science Edition), 2019, 58 (3): 269- 313.
|
18 |
KOMATSU T, SENDA Y, KONDO R. Acoustic event detection based on non-negative matrix factorization with mixtures of local dictionaries and activation aggregation[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2016: 2259-2263.
|
19 |
GIANNOULIS P, POTAMIANOS G, MARAGOS P. Multi-channel non-negative matrix factorization for overlapped acoustic event detection[C]//Proc. of the 26th European Signal Processing Conference, 2018: 857-861.
|
20 |
MAIRAL J , BACH F , PONCE J . Task-driven dictionary learning[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2012, 34 (4): 791- 804.
|
21 |
RAKOTOMAMONJY A . Supervised representation learning for audio scene classification[J]. IEEE/ACM Trans.on Audio, Speech, and Language Processing, 2017, 25 (6): 1253- 1265.
doi: 10.1109/TASLP.2017.2690561
|
22 |
PHAM L, MCLOUGHLIN I, PHAN H, et al. A robust framework for acoustic scene classification[C]//Proc. of the Interspeech, 2019: 3634-3638.
|
23 |
LI X Y, CHEBIYYAM V, KIRCHHOFF K. Multi-stream network with temporal attention for environmental sound classification[C]//Proc. of the Interspeech, 2019: 3604-3608.
|
24 |
KONG Q, CAO Y, IQBAL T, et al. Cross-task learning for audio tagging, sound event detection and spatial localization: Dcase 2019 baseline systems[EB/OL]. [2021-05-28]. http://arxiv.org/abs/1904.03476v3.
|
25 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale imagerecognition[EB/OL]. [2021-05-28]. http://arxiv.org/abs/1409.1556v6.
|
26 |
MCDONNELL M D. Training wide residual networks for deployment using a single bit for each weight[EB/OL]. [2021-05-28]. http://arxiv.org/abs/1802.08530.
|
27 |
MESAROS A, HEITTOLA T, DIMENT A, et al. DCASE 2017 Challenge setup: tasks, datasets and baseline system[C]//Proc. of the Detection and Classification of Acoustic Scenes and Events Workshop, 2017: 85-92.
|
28 |
WANG H L, ZOU Y X, CHONG D D. Acoustic scene classification with spectrogram processing strategies[C]//Pro. of the Detection and Classification of Acoustic Scenes and Events Workshop, 2020.
|
29 |
WANG C, SANTOSO A, WANG J. Acoustic scene classification using self-determination convolutional neural network[C]//Proc. of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, 2017: 19-22.
|
30 |
DANG A, VUT H, WANG J. Acoustic scene classification using convolutional neural networks and multi-scale multi-feature extraction[C]//Proc. of the IEEE International Conference on Consumer Electronics, 2018.
|