1 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37.
|
2 |
SINDHWANI N , VERMA S , BAJAJ T , et al. Comparative analysis of intelligent driving and safety assistance systems using YOLO and SSD model of deep learning[J]. International Journal of Information System Modeling and Design, 2021, 12 (1): 131- 146.
doi: 10.4018/IJISMD.2021010107
|
3 |
ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection[C]//Proc. of the IEEE International Conference on Computer Vision and Pattern Recognition, 2018: 4203-4212.
|
4 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
5 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
|
6 |
朱明明, 许悦雷, 马时平, 等. 基于特征融合与软判决的遥感图像飞机检测[J]. 光学学报, 2019, 39 (2): 71- 77.
|
|
ZHU M M , XU Y L , MA S P , et al. Airplane detection based on feature fusion and soft decision in remote sensing images[J]. Acta Optica Sinica, 2019, 39 (2): 71- 77.
|
7 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proc. of the Advances in Neural Information Processing Systems, 2015: 91-99.
|
8 |
朱敏超, 冯涛, 张钰. 基于FD-SSD的遥感图像多目标检测方法[J]. 计算机应用与软件, 2019, 36 (1): 232- 238.
doi: 10.3969/j.issn.1000-386x.2019.01.042
|
|
ZHU M C , FENG T , ZHANG Y . Remote sensing image multi-target detection method based on FD-SSD[J]. Computer Applications and Software, 2019, 36 (1): 232- 238.
doi: 10.3969/j.issn.1000-386x.2019.01.042
|
9 |
LI Z X, ZHOU F Q. FSSD: feature fusion single shot multibox detector[EB/OL]. [2021-01-10]. https://arxiv.org/abs/1712.00960.
|
10 |
FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2021-01-03]. https://arxiv.org/abs/1701.06659.
|
11 |
郑浦, 白宏阳, 李伟, 等. 复杂背景下的小目标检测算法[J]. 浙江大学学报(工学版), 2020, 54 (9): 1777- 1784.
|
|
ZHENG P , BAI H Y , LI W , et al. Small target detection algorithm in complex background[J]. Journal of Zhejiang University (Engineering Science), 2020, 54 (9): 1777- 1784.
|
12 |
汪能, 胡君红, 刘瑞康, 等. 基于Bi-SSD的小目标检测算法[J]. 计算机系统应用, 2020, 29 (11): 139- 144.
|
|
WANG N , HU J H , LIU R K , et al. Small target detection algorithm based on Bi-SSD[J]. Computer Systems & Applications, 2020, 29 (11): 139- 144.
|
13 |
赵彤, 刘洁瑜, 刘星. 空对地场景信息辅助的目标检测算法[J]. 计算机辅助设计与图形学学报, 2019, 31 (10): 1795- 1801.
|
|
ZHAO T , LIU J Y , LIU X . Target detection algorithm using air-to-ground scene information[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (10): 1795- 1801.
|
14 |
WANDELL B A , WINAWER J . Computational neuroimaging and population receptive fields[J]. Trends in Cognitive Sciences, 2015, 19 (6): 349- 357.
doi: 10.1016/j.tics.2015.03.009
|
15 |
LIU S T, HUANG D. Receptive filed block net for accurate and fast object detection[C]//Proc. of the European Conference on Computer Vision, 2018: 385-400.
|
16 |
DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proc. of the Advances in the Neural Information Processing Systems, 2016: 379-387.
|
17 |
ZHOU P, NI B B, GENG C, et al. Scale-transferrable object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 528-537.
|
18 |
DANG L F, ZUO W Y, SHI Q. Research on SSD countersink defect detection method based on machine vision[C]//Proc. of the Asta Conference on Geological Research and Environmental Technology, 2021, 632: 042068.
|
19 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc. of the International Conference on Machine Learning, 2015.
|
20 |
SZEGEDY C, WEI L, YANG Q J, et al. Going deeper with convolutions[C]//Proc. of the IEEE International Conference on Computer Vision and Pattern Recognition, 2015.
|
21 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proc. of the IEEE International Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
|
22 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Proc. of the IEEE International Conference on Computer Vision and Pattern Recognition, 2017.
|
23 |
KIM K H, HONG S, ROH B, et al. PVANET: deep but lightweight neural networks for real-time object detection[EB/OL]. [2021-01-03]. https://arxiv.org/abs/1608.08021.
|
24 |
DAI J, QI H Z. Deformable convolutional networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
25 |
HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]//Proc. of the European Conference on Computer Vision, 2018.
|
26 |
ZHANG W , SUN W H . Research on small moving target detection algorithm based on complex scene[J]. Journal of Phy-sics: Conference Series, 2021, 1738, 012093.
doi: 10.1088/1742-6596/1738/1/012093
|
27 |
YANG W, ZHANG J, ZHANG Z B, et al. Research on real-time vehicle detection algorithm based on deep learning[C]//Proc. of the Chinese Conference on Pattern Recognition and Computer Vision, 2018: 126-127.
|
28 |
LEE S , CHAN C , MAYO S J , et al. How deep learning extracts and learns leaf features for plant classification[J]. Pattern Recognition, 2017, 71, 118- 131.
doi: 10.1016/j.patcog.2017.06.002
|
29 |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
30 |
REDOMN J, FARHADI A. YOLOv3: an incremental improvement[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|