系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (3): 875-883.doi: 10.12305/j.issn.1001-506X.2022.03.20

• 系统工程 • 上一篇    下一篇

考虑随机冲击影响的多部件系统视情维修与备件库存联合优化

李京峰1,*, 陈云翔1, 项华春1, 王健2   

  1. 1. 空军工程大学装备管理与无人机工程学院, 陕西 西安 710051
    2. 中国人民解放军94354部队, 山东 济宁 272412
  • 收稿日期:2021-02-08 出版日期:2022-03-01 发布日期:2022-03-10
  • 通讯作者: 李京峰
  • 作者简介:李京峰 (1993—), 男, 博士研究生, 主要研究方向为装备发展战略与管理决策、装备维修保障|陈云翔 (1962—), 男, 教授, 博士, 主要研究方向为装备系统工程、装备管理等|项华春 (1980—), 男, 副教授, 博士, 主要研究方向为装备可靠性与系统工程|王健 (1991—), 男, 工程师, 博士, 主要研究方向为装备系统工程与管理决策
  • 基金资助:
    国家自然科学基金(71901216)

Joint optimization of condition-based maintenance and spare part inventory for multi-component system considering random shock effect

Jingfeng LI1,*, Yunxiang CHEN1, Huachun XIANG1, Jian WANG2   

  1. 1. Equipment Management & UAV Engineering College, Air Force Engineering University, Xi'an 710051, China
    2. Unit 94354 of the PLA, Jining 272412, China
  • Received:2021-02-08 Online:2022-03-01 Published:2022-03-10
  • Contact: Jingfeng LI

摘要:

视情维修与备件库存联合优化是确保装备内关键部件安全运行, 降低维修保障成本的有效方法。针对现有模型忽略复杂环境中随机冲击影响的问题, 提出一种考虑随机冲击影响的多部件系统视情维修与备件库存联合优化模型。首先, 建立随机冲击影响下的退化模型及可靠度函数模型, 在首达时间的意义下利用阈值转换思想推导出剩余寿命概率分布, 采用极大似然法估计退化模型参数; 然后, 制定视情维修与备件库存联合策略, 以平均费用率最低为目标建立联合优化模型, 利用粒子群优化算法和蒙特卡罗仿真进行求解; 最后, 通过实例分析和敏感性分析验证了所提模型的有效性和应用价值。

关键词: 视情维修, 备件库存, 联合优化, 随机冲击, 多部件系统

Abstract:

The joint optimization of condition-based maintenance and spare part inventory is an effective method to ensure the safety operation of key components in equipment and reduce maintenance support costs. In order to solve the problem that the existing models ignore the effects of random shock in complex environments, a joint optimization model of condition-based maintenance and spare part inventory for multi-component system considering random shock effects is proposed. Firstly, the degradation model and the reliability model under random shock are established. In the sense of the first hitting time, the probability distribution of the remaining useful life is derived using the idea of threshold conversion, and the degradation model parameters are estimated by the maximum likelihood method. Then, the joint policy of condition-based maintenance and spare part inventory is formulated, and the joint optimization model is established with the target of the lowest average cost ratio. Meanwhile, particle swarm optimization and Monte Carlo simulation are used to solve this model. Finally, the validity and application value of the proposed model are verified through an example analysis and sensitivity analysis.

Key words: condition-based maintenance, spare part inventory, joint optimization, random shock, multi-component system

中图分类号: