系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (2): 684-695.doi: 10.12305/j.issn.1001-506X.2022.02.40
冯克涛, 李晓毅*, 曲晨, 王申涛, 陈谋
收稿日期:
2021-03-05
出版日期:
2022-02-18
发布日期:
2022-02-24
通讯作者:
李晓毅
作者简介:
冯克涛(1989—), 男, 硕士研究生, 主要研究方向为无线紫外光通信|李晓毅(1973—), 男, 教授, 博士, 主要研究方向为无线紫外光通信|曲晨(1983—), 女, 副教授, 硕士, 主要研究方向为统计学|王申涛(1980—), 男, 副教授, 硕士, 主要研究方向为无线光通信、光电对抗|陈谋(1991—), 男, 讲师, 硕士, 主要研究方向为光通信
基金资助:
Ketao FENG, Xiaoyi LI*, Chen QU, Shentao WANG, Mou CHEN
Received:
2021-03-05
Online:
2022-02-18
Published:
2022-02-24
Contact:
Xiaoyi LI
摘要:
针对起伏地形环境下求解民航地空甚高频(very high frequency, VHF)通信有效覆盖范围冗余较大、精度较低的问题, 采用改进的最大斜率法进行了仿真研究。首先, 考虑遮蔽角计算存在计算冗余, 提出“高程清洗”方法, 降低计算量。其次, 考虑求解最大斜率遮蔽角存在误差, 采用改进的反距离加权插值法对原始数字高程模型数据进行插值提升分辨率, 提高了切点逼近点位置精度。然后, 为确定遮蔽区域具体点位, 提出“切点截止法”进行求解。最后, 为得到准确覆盖率, 采用“网格法”分析计算。实验表明, 改进的最大斜率法可有效减少计算冗余, 提高信号覆盖求解精度, 覆盖率相对改进前分别降低9.58%、4.10%和1.26‰。改进的VHF有效覆盖范围仿真程序可为VHF地面通信站选址、飞机航线规划提供支撑。
中图分类号:
冯克涛, 李晓毅, 曲晨, 王申涛, 陈谋. 基于DEM的民航地空VHF通信有效覆盖仿真研究[J]. 系统工程与电子技术, 2022, 44(2): 684-695.
Ketao FENG, Xiaoyi LI, Chen QU, Shentao WANG, Mou CHEN. Simulation research on effective coverage of civil aviation ground to air VHF communication based on DEM[J]. Systems Engineering and Electronics, 2022, 44(2): 684-695.
表1
IDW插值效果对比"
实验地形 | 求解方法 | β | MAE/m | RMSPE/m | 相关系数R | 平均耗时/s |
Ⅰ | 文献[ | 3.540 6 | 0.092 796 | 0.217 39 | 0.999 98 | 187.90 |
文献[ | 3.553 7 | 0.092 755 | 0.217 33 | 0.999 98 | 200.98 | |
本文方法 | 3.565 6 | 0.092 734 | 0.217 28 | 0.999 98 | 230.93 | |
Ⅱ | 文献[ | 3.794 9 | 0.084 541 | 0.241 39 | 0.999 97 | 69.48 |
文献[ | 3.775 7 | 0.084 534 | 0.241 31 | 0.999 97 | 72.89 | |
本文方法 | 3.776 2 | 0.084 534 | 0.241 31 | 0.999 97 | 75.92 | |
Ⅲ | 文献[ | 3.498 5 | 0.052 113 | 0.150 42 | 0.999 98 | 30.66 |
文献[ | 3.515 3 | 0.052 062 | 0.150 38 | 0.999 98 | 30.94 | |
本文方法 | 3.521 7 | 0.052 045 | 0.150 36 | 0.999 98 | 33.89 |
1 | MAHMOUD M S B , GUERBER C , LARRIEU N , et al. Aeronautical air-ground data link communications[M]. London: Wiley-ISTE, 2014. |
2 |
李勇. 基于甚高频地空通信信号覆盖问题分析与研究[J]. 中国民航飞行学院学报, 2019, 30 (6): 23- 26.
doi: 10.3969/j.issn.1009-4288.2019.06.007 |
LI Y . Analysis and research on signal coverage based on VHF ground to air communication[J]. Journal of Civil Aviation Flight College of China, 2019, 30 (6): 23- 26.
doi: 10.3969/j.issn.1009-4288.2019.06.007 |
|
3 |
封瑜. 甚高频覆盖范围研究与仿真计算[J]. 青海师范大学学报(自然科学版), 2017, 33 (3): 30- 36.
doi: 10.3969/j.issn.1001-7542.2017.03.007 |
FENG Y . Research and simulation of VHF coverage[J]. Journal of Qinghai Normal University (Natural Science Edition), 2017, 33 (3): 30- 36.
doi: 10.3969/j.issn.1001-7542.2017.03.007 |
|
4 | 中国民用航空局. 民用航空通信导航监视台(站)设置场地规范第2部分: 监视: MH/T 4003.2-2014[S]. 北京: 中国标准出版社, 2014. |
Civil Aviation Administration of China. Site specification for civil avia-tion communication and navigation monitoring stations(stations). Part 2: monitoring: MH/T 4003.2-2014[S]. Beijing: China Standards Press, 2014. | |
5 | 由迪, 袁春娟. 浅析影响超短波通信距离的主要因素[J]. 科技风, 2019, (2): 94. |
YOU D , YUAN C J . Analysis of the main factors affecting the ultrashort wave communication distance[J]. Science and Technology Wind, 2019, (2): 94. | |
6 |
贾长东, 李德林, 曹红. 民用机场拟建甚高频(VHF)遮蔽角的测绘实践与探索[J]. 测绘与空间地理信息, 2015, 38 (11): 192- 194.
doi: 10.3969/j.issn.1672-5867.2015.11.060 |
JIA C D , LI D L , CAO H . Surveying and mapping practice and exploration of VHF shielding angle for civil airport[J]. Sur-veying and Mapping and Spatial Geographic Information, 2015, 38 (11): 192- 194.
doi: 10.3969/j.issn.1672-5867.2015.11.060 |
|
7 |
周宏宇, 李朝阳. 低空地空通信覆盖分析与仿真[J]. 信息通信, 2017, (3): 171- 172.
doi: 10.3969/j.issn.1673-1131.2017.03.091 |
ZHOU H Y , LI C Y . Coverage analysis and simulation of low altitude ground to air communication[J]. Information Communi-cation, 2017, (3): 171- 172.
doi: 10.3969/j.issn.1673-1131.2017.03.091 |
|
8 |
康素成. 无线通信系统电波覆盖定量计算仿真研究[J]. 计算机仿真, 2019, 36 (9): 202- 205, 281.
doi: 10.3969/j.issn.1006-9348.2019.09.041 |
KANG S C . Simulation research on radio wave coverage quantitative calculation of wireless communication system[J]. Computer Simulation, 2019, 36 (9): 202- 205, 281.
doi: 10.3969/j.issn.1006-9348.2019.09.041 |
|
9 | 刘文评, 曹博, 刘志刚, 等. 不规则地形对ADS-B地面站信号覆盖影响分析[J]. 电光与控制, 2016, 23 (6): 84- 89. |
LIU W P , CAO B , LIU Z G , et al. Analysis of the influence of irregular terrain on the signal coverage of ADS-B ground station[J]. Electro Optic and Control, 2016, 23 (6): 84- 89. | |
10 | 沈笑云, 尤佳林, 张思远. 多因素影响下的ADS-B地面站覆盖及仿真[J]. 计算机测量与控制, 2016, 24 (8): 186- 189. |
SHEN X Y , YOU J L , ZHANG S Y . Coverage and simulation of ADS-B ground station under the influence of multiple factors[J]. Computer Measurement and Control, 2016, 24 (8): 186- 189. | |
11 | GOLUB D , DOYTSHER Y , FISHER-GEWIRTZMAN D . 3D visibility analysis indicating quantitative and qualitative aspects of the visible space[J]. Survey Review, 2017, 50 (359): 134- 146. |
12 |
JIEUN B , YOSOON C . Comparison of communication viewsheds derived from high-resolution digital surface models using line-of-sight, 2D fresnel zone, and 3D fresnel zone analysis[J]. ISPRS Inter-national Journal of GEO Information, 2018, 7 (8): 322.
doi: 10.3390/ijgi7080322 |
13 | 王豪. 大区域多尺度雷达遮蔽角计算关键技术研究与实现[D]. 郑州: 解放军信息工程大学, 2011. |
WANG H. Research and implementation of key technologies for large area multi-scale radar shielding angle calculation[D]. Zhengzhou: Information Engineering University of Chinese PLA, 2011. | |
14 | 汤国安, 李发源, 刘学军. 数字高程模型教程[M]. 北京: 科学出版社, 2010. |
TANG G A , LI F Y , LIU X J . Digital elevation model course[M]. Beijing: Science Press, 2010. | |
15 | 李志林, 朱庆. 数字高程模型[M]. 第2版 武汉: 武汉大学出版社, 2003. |
LI Z L , ZHU Q . Digital elevation model[M]. 2nd ed Wuhan: Wuhan University Press, 2003. | |
16 | 徐公国, 单甘霖, 段修生. 基于改进d-Xdraw算法的起伏地形下异构多传感器分簇部署方法[J]. 系统工程与电子技术, 2019, 41 (7): 1516- 1524. |
XU G G , SHAN G L , DUAN X S . Heterogeneous multi-sensor clustering deployment method based on improved d-Xdraw algorithm in rugged terrain[J]. Systems Engineering and Electronics, 2019, 41 (7): 1516- 1524. | |
17 |
LU G Y , WONG D W . An adaptive inverse distance weighting spatial interpolation technique[J]. Computers and Geosciences, 2008, 34 (9): 1044- 1055.
doi: 10.1016/j.cageo.2007.07.010 |
18 |
CAVUS Y , AKSOY H . Spatial drought characterization for Seyhan river basin in the medi-terranean region of Turkey[J]. Water, 2019, 11 (7): 1331.
doi: 10.3390/w11071331 |
19 | GU K Y , ZHOU Y , SUN H , et al. Spatial distribution and determinants of PM2.5 in China's cities: fresh evidence from IDW and GWR[J]. Environmental Monitoring and Assessment, 2020, 193, 15. |
20 | SHENG J , YU P , ZHANG H N , et al. Spatial variability of soil Cd content based on IDW and RBF in Fujiang River, Mianyang, China[J]. Journal of Soils and Sediments, 2020, 21, 419- 429. |
21 | IKECHUKWU M N , EBINNE E , IDOREN-YIN U , et al. Accuracy assessment and comparative analysis of IDW, spline and Kriging in spatial interpolation of landform (topography): an experimental study[J]. Journal of Geographic Information System, 2017, 9 (3): 351- 371. |
22 | CHEN X , TIANFIELD H , DU W L . Bee-foraging learning particle swarm optimization[J]. Applied Soft Computing, 2021, 102 (11): 107134. |
23 |
SUN H M , YU J Z , ZHANG X L , et al. The adaptive particle swarm optimization technique for solving microseismic source location parameters[J]. Nonlinear Processes in Geophysics, 2019, 26 (3): 163- 173.
doi: 10.5194/npg-26-163-2019 |
24 |
赵新, 纪永祥, 罗熙斌, 等. 基于改进粒子群优化算法的近炸引信最佳炸高计算法[J]. 兵工学报, 2021, 42 (5): 924- 929.
doi: 10.3969/j.issn.1000-1093.2021.05.004 |
ZHAO X , JI Y X , LUO X B , et al. Optimal burst height of proximity fuze based on improved particle swarm optimization algorithm[J]. Acta Ordnance Engineering Sinica, 2021, 42 (5): 924- 929.
doi: 10.3969/j.issn.1000-1093.2021.05.004 |
|
25 |
EID A . Allocation of distributed generations in radial distribution systems using adaptive PSO and modified GSA multi-objective optimizations[J]. Alexandria Engineering Journal, 2020, 59 (6): 4771- 4786.
doi: 10.1016/j.aej.2020.08.042 |
26 | SHI Y, EBERHART R C. A modified particle swarm optimizer[C]//Proc. of the IEEE Congress on Evolutionary Computation, 1998: 69-73. |
27 | LI J , HEAP A D . Spatial interpolation methods applied in the environmental sciences: a review[J]. Environmental Modelling and Software, 2014, 53, 173- 189. |
28 |
BARBULESCU A , BAUTU A , BAUTU E . Optimizing inverse distance weighting with particle swarm optimization[J]. Applied Sciences, 2020, 10 (6): 2054.
doi: 10.3390/app10062054 |
29 |
ALINA B , CRISTINA S , LARISA I M . Computing the Beta parameter in IDW interpolation by using a genetic algorithm[J]. Water, 2021, 13 (6): 863.
doi: 10.3390/w13060863 |
30 | MORGAN R S , EL-HADY M A , RAHIM I S , et al. Evaluation of various interpolation techniques for estimation of selected soil properties[J]. International Journal of GEOMATE, 2017, 13 (38): 23- 30. |
31 |
KIM K H , SHIM P S , SHIN S . An alternative bilinear interpolation method between spherical grids[J]. Atmosphere, 2019, 10 (3): 123.
doi: 10.3390/atmos10030123 |
32 |
AL-MUTAIRI N , EL-GAMMAL M , ALSAHLI M , et al. Spatial enhancement of DEM using interpolation methods: a case study of Kuwait's coastal zones[J]. American Journal of Remote Sensing, 2019, 7 (1): 5- 12.
doi: 10.11648/j.ajrs.20190701.12 |
33 | 沈笑云, 曹博, 张思远, 等. 开阔区域ADS-B地面站信号覆盖仿真分析[J]. 计算机仿真, 2015, 32 (3): 94- 99. |
SHEN X Y , CAO B , ZHANG S Y , et al. Simulation analysis of signal coverage of ADS-B ground station in open area[J]. Computer Simulation, 2015, 32 (3): 94- 99. | |
34 | 刘少毅, 张卫柱, 赵永刚, 等. 基于等效地球半径和地形的电磁波覆盖范围分析[J]. 测绘科学, 2015, 40 (5): 29- 32. |
LIU S Y , ZHANG W Z , ZHAO Y G , et al. Analysis of electromagnetic wave coverage based on equivalent earth radius and topography[J]. Surveying and Mapping Science, 2015, 40 (5): 29- 32. | |
35 | 陈超凡, 江晶, 李佳炜. 一种用于雷达遮蔽分析的DEM数据处理方法[J]. 空军预警学院学报, 2020, 34 (1): 21- 26. |
CHEN C F , JIANG J , LI J W . A DEM data processing method for radar shielding analysis[J]. Journal of Air Force Early Warning Academy, 2020, 34 (1): 21- 26. | |
36 | 焦卫东, 唐志虎, 沈笑云, 等. 北斗GBAS着陆系统信号覆盖评估方法[J]. 电波科学学报, 2016, 31 (5): 978- 987. |
JIAO W D , TANG Z H , SHEN X Y , et al. Signal coverage evaluation method of Beidou GBAS landing system[J]. Journal of Radio Science, 2016, 31 (5): 978- 987. | |
37 | 陈明福, 王超, 施军. 多站无源雷达作用距离和覆盖范围分析[J]. 现代雷达, 2020, 42 (2): 7- 11, 15. |
CHEN M F , WANG C , SHI J . Aanalysis of range and coverage of multi-station passive radar[J]. Modern Radar, 2020, 42 (2): 7- 11, 15. | |
38 | SKOLNIK M . Radar handbook[M]. 3rd ed New York: The McGraw Hill Companies, 2008. |
[1] | 王安吉, 曹菲, 许剑锋, 秦建强, 薛春岭. 基于地形遮蔽的自旋弹测高雷达回波建模与仿真[J]. 系统工程与电子技术, 2021, 43(10): 2828-2835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||